scholarly journals Masses of White Dwarf Binary Companions to Type Ia Supernovae Measured from Runaway Velocities

2021 ◽  
Vol 923 (2) ◽  
pp. L34
Author(s):  
Evan B. Bauer ◽  
Vedant Chandra ◽  
Ken J. Shen ◽  
J. J. Hermes

Abstract The recently proposed “dynamically driven double-degenerate double-detonation” (D6) scenario posits that Type Ia supernovae (SNe) may occur during dynamically unstable mass transfer between two white dwarfs (WDs) in a binary. This scenario predicts that the donor WD may then survive the explosion and be released as a hypervelocity runaway, opening up the exciting possibility of identifying remnant stars from D6 SNe and using them to study the physics of detonations that produce Type Ia SNe. Three candidate D6 runaway objects have been identified in Gaia data. The observable runaway velocity of these remnant objects represents their orbital speed at the time of SN detonation. The orbital dynamics and Roche lobe geometry required in the D6 scenario place specific constraints on the radius and mass of the donor WD that becomes the hypervelocity runaway. In this Letter, we calculate the radii required for D6 donor WDs as a function of the runaway velocity. Using mass–radius relations for WDs, we then constrain the masses of the donor stars as well. With measured velocities for each of the three D6 candidate objects based on Gaia EDR3, this work provides a new probe of the masses and mass ratios in WD binary systems that produce SN detonations and hypervelocity runaways.

2004 ◽  
Vol 215 ◽  
pp. 571-572 ◽  
Author(s):  
S.-C. Yoon ◽  
N. Langer

Classical studies of accreting white dwarfs have assumed spherical symmetry. However, it is believed that in close binary systems the transfered matter carries angular momentum to spin up the accreting star. Here, we present preliminary results of CO white dwarf models which accrete helium rich matter with effects of rotation considered, in the context of the Sub-Chandrasekhar mass scenario for Type Ia supernovae.


2011 ◽  
Vol 7 (S281) ◽  
pp. 154-161 ◽  
Author(s):  
G. C. Anupama

AbstractRecurrent novae (RNe) belong to the group of cataclysmic variables that exhibit nova outbursts at intervals on the order of decades. They are rare, with 10 Galactic RNe known to date. Two are known in the LMC, while there are a few suspected RNe in M31. Nova outburst models require a high accretion rate on a massive white dwarf to explain the recurring nova outbursts, making this class of objects one of the most likely progenitor binary systems of Type Ia supernovae. The observational properties of the known Galactic recurrent novae are presented here, together with some discussion on the recent outbursts of RS Ophiuchi (2006), U Scorpii (2010), and T Pyxidis (2011).


2011 ◽  
Vol 7 (S281) ◽  
pp. 34-35
Author(s):  
Rosanne Di Stefano

AbstractEvery model for the progenitors of Type Ia supernovae (SNe Ia) requires that binaries pass through an epoch during which a white dwarf (WD) orbits a non-degenerate star. Depending on the mass of the WD, the radius of its companion, and the orbital separation, the WD may lens its companion. The lensing event would be an antitransit, an increase in light from the companion that can rise to the level of a percent or more, during an interval of hours. Antitransits are periodic. By studying them we can determine the properties of both the WD and its companion, as well as the characteristics of the orbit. Lensing events of this type are almost certain to be observed by the Kepler mission, while some can even be detected by ground-based surveys. Antitransits and transits will both provide valuable insight into the end states of common envelope evolution and of stable mass transfer, resolving issues that must be understood before we can fully unravel the progenitor puzzle.


2003 ◽  
Vol 208 ◽  
pp. 459-460
Author(s):  
Tatsuhiro Uenishi ◽  
Ken'ichi Nomoto ◽  
Izumi Hachisu

Type Ia supernovae are very good, but not perfect, standard candles, because their observed brightness shows a little diversity. The origin of this dibersity needs to be understood for the application to cosmology.In close binary systems, a white dwarf must be rotating faster and faster as it gains angular momentum from the accretion disk. Its rapid rotation affects its final mass and strucure just before a supernova expolosion. Brightness of supernovae can be changed if mass of their progenitors have some diversity.


2004 ◽  
Vol 194 ◽  
pp. 111-112
Author(s):  
Lilia Ferrario

AbstractI argue that the observational evidence for white dwarf-white dwarf mergers supports the view that they give rise to ultra-massive white dwarfs or neutron stars through accretion induced collapse. The implications for the progenitors of Type Ia SNe are discussed.


2011 ◽  
Vol 7 (S281) ◽  
pp. 162-165 ◽  
Author(s):  
J. Mikołajewska

AbstractSymbiotic stars are interacting binaries in which the first-formed white dwarf accretes and burns material from a red giant companion. This paper aims at presenting physical characteristics of these objects and discussing their possible link with progenitors of Type Ia supernovae.


1992 ◽  
Vol 151 ◽  
pp. 225-234
Author(s):  
J. Craig Wheeler

Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.


Sign in / Sign up

Export Citation Format

Share Document