MEAN AND TURBULENT FLOW CHARACTERISTICS IN SUPERCRITICAL NARROW OPEN CHANNEL FLOWS: EFFECT OF FROUDE NUMBER

2019 ◽  
Author(s):  
DILA DEMIRAL
2002 ◽  
Vol 29 (2) ◽  
pp. 256-266 ◽  
Author(s):  
R Balachandar ◽  
D Blakely ◽  
J Bugg

This paper examines the mean velocity profiles in shallow, turbulent open channel flows. Velocity measurements were carried out in flows over smooth and rough beds using a laser-Doppler anemometer. One set of profiles, composed of 29 velocity distributions, was obtained in flows over a polished smooth aluminum plate. Three sets of profiles were obtained in flows over rough surfaces. The rough surfaces were formed by two sizes of sand grains and a wire mesh. The flow conditions over the rough surface are in the transitional roughness state. The measurements were obtained along the centerline of the flume at three different Froude numbers (Fr ~ 0.3, 0.8, 1.0). The lowest Froude number was selected to obtain data in the range of most other open channel testing programs and to represent a low subcritical Froude number. For each surface, the Reynolds number based on the boundary layer momentum thickness was varied from about 600 to 3000. In view of the recent questions concerning the applicability of the log-law and the debate regarding log-law versus power law, the turbulent inner region of the boundary layer is inspected. The fit of one type of power law for shallow flows over a smooth surface is considered. The appropriateness of extending this law to flows over rough surfaces is also examined. Alternate methods for determining the friction velocity of flows over smooth and rough surfaces are considered and compared with standard methods currently in use.Key words: power law, open channel flow, velocity profile, surface roughness.


2021 ◽  
Vol 29 (2) ◽  
pp. 39-48
Author(s):  
Yebegaeshet T. Zerihun

Abstract In this study, a depth-averaged numerical model was employed to investigate the two-dimensional flow features of transitional open-channel flows from a supercritical to a subcritical state. Compared to a shallow-water model, the proposed model incorporates supplementary terms to account for the effects of non-uniform velocity and non-hydrostatic pressure distributions. The model equation was solved numerically by means of the Adams–Bashforth–Moulton scheme. A wide variety of transitional open-channel flow problems such as hydraulic jumps was considered for assessing the suitability of the numerical model. The results of the model for the free-surface profile, pressure distribution, and characteristics of the first wave of an undular jump were compared with the experimental data, and the agreement was found to be satisfactory. Despite the effects of the three-dimensional characteristics of the flow and the bulking of the flow caused by air entrainment, the model performed reasonably well with respect to the simulations of the mean flow characteristics of the curvilinear turbulent flow problems. Furthermore, the results of this investigation confirmed that the model is more suitable for analyzing near-critical turbulent flow problems without cross-channel shock waves.


1996 ◽  
Vol 40 ◽  
pp. 767-772
Author(s):  
Kouki ONITSUKA ◽  
Masaru URA ◽  
Juichiro AKIYAMA ◽  
Shin SAKAMOTO

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


Sign in / Sign up

Export Citation Format

Share Document