Overexpression of RII beta regulatory subunit of protein kinase A induces growth inhibition and reverse-transformation in SK-N-SH human neuroblastoma cells

Author(s):  
S Kim ◽  
G Lee ◽  
Y ChoChung ◽  
S Park ◽  
S Hong
2000 ◽  
Vol 20 (24) ◽  
pp. 9120-9126 ◽  
Author(s):  
Fran Ledo ◽  
Angel M. Carrión ◽  
Wolfgang A. Link ◽  
Britt Mellström ◽  
José R. Naranjo

ABSTRACT Protein kinase A-dependent derepression of the human prodynorphin gene is regulated by the differential occupancy of the Dyn downstream regulatory element (DRE) site. Here, we show that a direct protein-protein interaction between DREAM and the CREM repressor isoform, αCREM, prevents binding of DREAM to the DRE and suggests a mechanism for cyclic AMP-dependent derepression of the prodynorphin gene in human neuroblastoma cells. Phosphorylation in the kinase-inducible domain of αCREM is not required for the interaction, but phospho-αCREM shows higher affinity for DREAM. The interaction with αCREM is independent of the Ca2+-binding properties of DREAM and is governed by leucine-charged residue-rich domains located in both αCREM and DREAM. Thus, our results propose a new mechanism for DREAM-mediated derepression that can operate independently of changes in nuclear Ca2+.


1998 ◽  
Vol 18 (12) ◽  
pp. 6921-6929 ◽  
Author(s):  
Angel M. Carrión ◽  
Britt Mellström ◽  
Jose R. Naranjo

ABSTRACT Induction of the prodynorphin gene has been implicated in medium and long-term adaptation during memory acquisition and pain. By 5′ deletion mapping and site-directed mutagenesis of the human prodynorphin promoter, we demonstrate that both basal transcription and protein kinase A (PKA)-induced transcription in NB69 and SK-N-MC human neuroblastoma cells are regulated by the GAGTCAAGG sequence centered at position +40 in the 5′ untranslated region of the gene (named the DRE, for downstream regulatory element). The DRE repressed basal transcription in an orientation-independent and cell-specific manner when placed downstream from the heterologous thymidine kinase promoter. Southwestern blotting and UV cross-linking experiments with nuclear extracts from human neuroblastoma cells or human brain revealed a protein complex of approximately 110 kDa that specifically bound to the DRE. Forskolin treatment reduced binding to the DRE, and the time course paralleled that for an increase in prodynorphin gene expression. Our results suggest that under basal conditions, expression of the prodynorphin gene is repressed by occupancy of the DRE site. Upon PKA stimulation, binding to the DRE is reduced and transcription increases. We propose a model for human prodynorphin activation through PKA-dependent derepression at the DRE site.


Endocrinology ◽  
2005 ◽  
Vol 146 (5) ◽  
pp. 2295-2305 ◽  
Author(s):  
Yong Xu ◽  
Teresa L. Krukoff

Abstract We used SK-N-SH human neuroblastoma cells to test the hypothesis that adrenomedullin (ADM), a multifunctional neuropeptide, stimulates nitric oxide (NO) release by modulating intracellular free calcium concentration ([Ca2+]i) in neuron-like cells. We used a nitrite assay to demonstrate that ADM (10 pm to 100 nm) stimulated NO release from the cells, with a maximal response observed with 1 nm at 30 min. This response was blocked by 1 nm ADM22–52, an ADM receptor antagonist or 2 μm vinyl-l-NIO, a neuronal NO synthase inhibitor. In addition, 5 μm 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester, an intracellular calcium chelator, eliminated the ADM-induced NO release. Similar results were observed when the cells were incubated in calcium-free medium or when l-type calcium channels were inhibited with 5 μm nifedipine or 10 μm nitrendipine. Depletion of calcium stores in the endoplasmic reticulum (ER) with 1 μm cyclopiazonic acid or 150 nm thapsigargin, or inhibition of ryanodine-sensitive receptors in the ER with 10 μm ryanodine attenuated the ADM-induced NO release. NO responses to ADM were mimicked by 1 mm dibutyryl cAMP, a cAMP analog, and were abrogated by 5 μm H-89, a protein kinase A inhibitor. Furthermore, Fluo-4 fluorescence-activated cell sorter analysis showed that ADM (1 nm) significantly increased [Ca2+]i at 30 min. This response was blocked by nifedipine (5 μm) or H-89 (5 μm) and was reduced by ryanodine (10 μm). These results suggest that ADM stimulates calcium influx through l-type calcium channels and ryanodine-sensitive calcium release from the ER, probably via cAMP-protein kinase A-dependent mechanisms. These elevations in [Ca2+]i cause activation of neuronal NO synthase and NO release.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1361
Author(s):  
Maira Zorzan ◽  
Claudia Del Vecchio ◽  
Stefania Vogiatzis ◽  
Elisa Saccon ◽  
Cristina Parolin ◽  
...  

Glioblastoma is the most malignant and most common form of brain tumor, still today associated with a poor 14-months median survival from diagnosis. Protein kinase A, particularly its regulatory subunit R2Alpha, presents a typical intracellular distribution in glioblastoma cells compared to the healthy brain parenchyma and this peculiarity might be exploited in a therapeutic setting. In the present study, a third-generation lentiviral system for delivery of shRNA targeting the regulatory subunit R2Alpha of protein kinase A was developed. Generated lentiviral vectors are able to induce an efficient and stable downregulation of R2Alpha in different cellular models, including non-stem and stem-like glioblastoma cells. In addition, our data suggest a potential correlation between silencing of the regulatory subunit of protein kinase A and reduced viability of tumor cells, apparently due to a reduction in replication rate. Thus, our findings support the role of protein kinase A as a promising target for novel anti-glioma therapies.


2021 ◽  
pp. 107732
Author(s):  
Nicolás González Bardeci ◽  
Enzo Tofolón ◽  
Felipe Trajtenberg ◽  
Julio Caramelo ◽  
Nicole Larrieux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document