scholarly journals Cyclic stretch promotes the ossification of ligamentum flavum by modulating the Indian hedgehog signaling pathway

2020 ◽  
Vol 22 (2) ◽  
pp. 1119-1128
Author(s):  
Rui Gao ◽  
Changgui Shi ◽  
Chengwei Yang ◽  
Yin Zhao ◽  
Xiongsheng Chen ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ganggang Ma ◽  
Yang Yang ◽  
Yong Chen ◽  
Xin Wei ◽  
Jie Ding ◽  
...  

Articular cartilage damage with subsequent impairment of joint function is a common feature of articular diseases, in particular, rheumatoid arthritis and osteoarthritis. While articular cartilage injury mediated by chondrocyte apoptosis is a known major pathological feature of arthritis, the specific mechanisms remain unclear at present. Transient receptor potential melastatin-like seven channel (TRPM7) is reported to play an important regulatory role in apoptosis. This study focused on the effects of TRPM7 on arthritic chondrocyte injury and its underlying mechanisms of action. Sodium nitroprusside (SNP)-induced rat primary chondrocyte apoptosis and rat adjuvant arthritis (AA) were used as in vitro and in vivo models, respectively. Blockage of TRPM7 with 2-APB or specific siRNA resulted in increased chondrocyte viability and reduced toxicity of SNP. Moreover, treatment with 2-APB enhanced the Bcl-2/Bax ratio and reduced cleaved PARP and IL-6, MMP-13 and ADAMTS-5 expression in SNP-treated chondrocytes. Activation of Indian Hedgehog with purmorphamine reversed the protective effects of 2-APB on SNP-induced chondrocyte apoptosis. Blockage of TRPM7 with 2-APB relieved the clinical signs of AA in the rat model and reduced the arthritis score and paw swelling. Similar to findings in SNP-treated chondrocytes, 2-APB treatment increased the Bcl-2/Bax ratio and suppressed cleaved PARP, IL-6, MMP-13, ADAMTS-5, TRPM7, and Indian hedgehog expression in articular cartilage of AA rats. Our collective findings suggest that blockade of TRPM7 could effectively reduce chondrocyte apoptosis and articular cartilage damage in rats with adjuvant arthritis through regulation of the Indian Hedgehog signaling pathway.


2004 ◽  
Vol 110 (5) ◽  
pp. 668-676 ◽  
Author(s):  
Hany Kayed ◽  
Jörg Kleeff ◽  
Shereen Keleg ◽  
Junchau Guo ◽  
Knut Ketterer ◽  
...  

Author(s):  
Yuan Gu ◽  
Xiaochen Liu ◽  
Lele Liao ◽  
Yongquan Gao ◽  
Yu Shi ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2894-2903 ◽  
Author(s):  
Shinichi Miyagawa ◽  
Daisuke Matsumaru ◽  
Aki Murashima ◽  
Akiko Omori ◽  
Yoshihiko Satoh ◽  
...  

During embryogenesis, sexually dimorphic organogenesis is achieved by hormones produced in the gonad. The external genitalia develop from a single primordium, the genital tubercle, and their masculinization processes depend on the androgen signaling. In addition to such hormonal signaling, the involvement of nongonadal and locally produced masculinization factors has been unclear. To elucidate the mechanisms of the sexually dimorphic development of the external genitalia, series of conditional mutant mouse analyses were performed using several mutant alleles, particularly focusing on the role of hedgehog signaling pathway in this manuscript. We demonstrate that hedgehog pathway is indispensable for the establishment of male external genitalia characteristics. Sonic hedgehog is expressed in the urethral plate epithelium, and its signal is mediated through glioblastoma 2 (Gli2) in the mesenchyme. The expression level of the sexually dimorphic genes is decreased in the glioblastoma 2 mutant embryos, suggesting that hedgehog signal is likely to facilitate the masculinization processes by affecting the androgen responsiveness. In addition, a conditional mutation of Sonic hedgehog at the sexual differentiation stage leads to abnormal male external genitalia development. The current study identified hedgehog signaling pathway as a key factor not only for initial development but also for sexually dimorphic development of the external genitalia in coordination with androgen signaling.


2004 ◽  
Vol 323 (2) ◽  
pp. 523-533 ◽  
Author(s):  
Norihisa Shindo ◽  
Atsushi Sakai ◽  
Kouji Yamada ◽  
Toru Higashinakagawa

Sign in / Sign up

Export Citation Format

Share Document