scholarly journals Determination of genetic aberrations and novel transcripts involved in the pathogenesis of oligodendroglioma using array comparative genomic hybridization and next generation sequencing

2018 ◽  
Author(s):  
Siti Hassanudin ◽  
Stephen Ponnampalam ◽  
Muhammad Amini
2020 ◽  
Author(s):  
Shengrong Du ◽  
Yun-Hong Lin ◽  
Yan Sun ◽  
Qing-Fen Chen ◽  
Zhi-Qing Huang ◽  
...  

Abstract Background: Advances in biotechnology, especially next-generation sequencing (NGS) and array comparative genomic hybridization (aCGH) approaches, have improved preimplantation genetic screening; however, these methods have not been directly compared. This study was carried out to identify the more promising method for screening reciprocal and Robertsonian translocations. Here, blastocysts from carriers with reciprocal and Robertsonian translocations were retrospectively evaluated and results from preimplantation genetic testing in 272 blastocytes were analysed for parental unbalanced translocations using aCGH and NGS. Results: There was no significant difference in the no embryo-transfer rate between aCGH and NGS. Among 59 blastocysts screened in the aCGH group, 32.76% were normal embryos and 67.24% were abnormal embryos, including 36.21% embryos with a translocation, 17.24% with no translocation, and 15.52% with combined abnormalities. Similar results were obtained from the 214 blastocysts tested in the NGS group. In women <35-years, more normal blastocysts were identified in the NGS group compared to the aCGH group. There was a higher rate of euploidy among blastocysts with higher quality grades in the NGS group than in the aCGH group for the trophectoderm (43.51% vs 29.41%) and inner cell mass (59.11% vs 25.00%). Conclusion: Equivalent clinical findings were observed for aCGH and NGS for parental reciprocal chromosomal translocations. However, NGS has the potential to overcome the inherent limitations of aCGH, including the detection of mosaicism and smaller partial gains/losses, thereby providing improvements in the detection of euploid blastocysts, along with enhanced reliability and sensitivity.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii99-iii99
Author(s):  
A Bonneville-levard ◽  
D Frappaz ◽  
D Pissaloux ◽  
Q Wang ◽  
D Perol ◽  
...  

Abstract BACKGROUND Personalized anti-tumoral therapies may currently be proposed on the basis of immuno-histochemistry, but also next-generation sequencing and comparative genomic hybridization. ProfiLER trial explored the feasibility, efficacy and the impact of molecular profiling for patients with solid or hematological advanced cancers including brain tumors. MATERIAL AND METHODS Patients with primary brain tumors, pre-treated with at least one line of anti-cancer treatment, could be included in this multicentric prospective trial. A molecular profile (next-generation sequencing and comparative genomic hydridization) was established on fresh or archived sample. Weekly molecular tumor board analysed results to propose as far as possible a molecular targeted therapy. RESULTS between February 2013 and December 2015, 141 patients with primary brain tumor were enrolled. One hundred five samples were further analyzed as 30 samples were excluded, and 6 are on-going. The rate of screen failure was 16/33 for stereotactic biopsy (49%) versus 11/104 (11%) for removal. The main representative histologic type of tumors were glioblastoma (n=46, 43,8%), low grade glioma (n=26, 24,8%), high grade glioma (n=12, 11,4%) and atypical and anaplastic meningioma (n=8, 7,6%). Median delay between the diagnostic of the primitive tumor and the inclusion in ProfiLER study was 2.7 years (0.2 - 29 years). Median delay between the consent and the results of the multidisciplinary meeting was 2.8 months (1–7.1 months). Forty-three patients (41%) presented at least one “druggable molecular alteration”. The most frequently altered genes were CDKN2A (n=18, 29%), EGFR (n=12, 20%), PDGFRa (n=8, 13%), PTEN (n=8, 13%), CDK4 (n=7, 11%), KIT (n=6, 10%), PIK3CA (n=5, 8%), MDM2 (n=3, 5%). Sixteen patients could not have a proposition of specific treatment due to death before MBT (n=5, 31.3%), lack of available clinical trials (n=9, 56%), or ambiguous results (n=2, 12.5%). Among the 27 patients (26%) for whom a specific therapy has been proposed, only six patients ultimately received a medical targeted therapy (everolimus n=3, erlotinib n=1, ruloxitinib n=1, sorafenib n=1). Four patients discontinued the treatment for toxicity, the 2 others for clinical progression. CONCLUSION routine high-throughput sequencing is feasible for brain tumors but delays should be reduced to be able to propose targeted therapies to patients fit enough to benefit from experimental treatment. Macroscopic surgery is the best way to obtain workable samples. Specific panel genes for neurologic tumors should be developed, as well as change of practices concerning exclusion criteria in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document