scholarly journals Gnomoniopsis chinensis (Gnomoniaceae, Diaporthales), a new fungus causing canker of Chinese chestnut in Hebei Province, China

MycoKeys ◽  
2020 ◽  
Vol 67 ◽  
pp. 19-32
Author(s):  
Ning Jiang ◽  
Ling-Yu Liang ◽  
Cheng-Ming Tian

Chinese chestnut (Castanea mollissima) is an important crop tree species in China. However, branch canker and fruit rot are two kinds of severe diseases, which weaken the host and decrease chestnut production. During our investigations into chestnut diseases in China, several fungi have been confirmed as casual agents in previous studies, namely Aurantiosacculus castaneae, Cryphonectria neoparasitica, Cry. parasitica, Endothia chinensis and Gnomoniopsis daii. In this study, a new canker pathogen is introduced based on morphology, phylogeny and pathogenicity. Typical Gnomoniopsis canker sign of wide, orange tendrils emerging from hosts’ glaucous lenticels were obvious on the diseased trees in the field. Symptomatic branches or bark on stems from different chestnut plantations were sampled and isolated, then strains were identified by comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions as well as morphological features. As a result, these strains appeared different from any known Gnomoniopsis species. Hence, we propose a novel species named Gnomoniopsis chinensis. Pathogenicity was further tested using the ex-type strain (CFCC 52286) and another strain (CFCC 52288) on both detached branches and 3-year-old chestnut seedlings. The inoculation results showed that Gnomoniopsis chinensis is mildly pathogenic to Chinese chestnut. However, further studies are required to confirm its pathogenicity to the other cultivated Castanea species in America, Europe and Japan.

MycoKeys ◽  
2021 ◽  
Vol 77 ◽  
pp. 41-64
Author(s):  
Qin Yang ◽  
Ning Jiang ◽  
Cheng-Ming Tian

Diaporthe species have often been reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. Although several Diaporthe species have been recorded, little is known about species able to infect forest trees in Jiangxi Province. Hence, extensive surveys were recently conducted in Jiangxi Province, China. A total of 24 isolates were identified and analysed using comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions, as well as their morphological features. Results revealed five novel taxa, D. bauhiniae, D. ganzhouensis, D. schimae, D. verniciicola, D. xunwuensis spp. nov. and three known species, D. apiculatum, D. citri and D. multigutullata.


MycoKeys ◽  
2020 ◽  
Vol 67 ◽  
pp. 1-18 ◽  
Author(s):  
Qin Yang ◽  
Ning Jiang ◽  
Cheng-Ming Tian

Diaporthe species (Sordariomycetes, Diaporthales) are often reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. In this study, Diaporthe specimens were collected from symptomatic twigs and branches at the Huoditang Forest Farm in Shaanxi Province, China. Identification was done using a combination of morphology and comparison of DNA sequence data of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions. Three new Diaporthe species are proposed: D. albosinensis, D. coryli and D. shaanxiensis. All species are illustrated and their morphology and phylogenetic relationships with other Diaporthe species are discussed.


MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 97-149 ◽  
Author(s):  
Qin Yang ◽  
Xin-Lei Fan ◽  
Vladimiro Guarnaccia ◽  
Cheng-Ming Tian

Diaporthespecies have often been reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. Although severalDiaporthespecies have been recorded in China, little is known about species able to infect forest trees. Therefore, extensive surveys were recently conducted in Beijing, Heilongjiang, Jiangsu, Jiangxi, Shaanxi and Zhejiang Provinces. The current results emphasised on 15 species from 42 representative isolates involving 16 host genera using comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS),calmodulin(cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions, as well as their morphological features. Three known species,D.biguttulata,D.eresandD.unshiuensis, were identified. In addition, twelve novel taxa were collected and are described asD.acerigena,D.alangii,D.betulina,D.caryae,D.cercidis,D.chensiensis,D.cinnamomi,D.conica,D.fraxinicola,D.kadsurae,D.padinaandD.ukurunduensis. The current study improves the understanding of species causing diebacks on ecological and economic forest trees and provides useful information for the effective disease management of these hosts in China.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nimali I. de Silva ◽  
Alan J. L. Phillips ◽  
Jian-Kui Liu ◽  
Saisamorn Lumyong ◽  
Kevin D. Hyde

Abstract Two new species of Lasiodiplodia (Lasiodiplodia endophytica and Lasiodiplodia magnoliae) are described and illustrated from Magnolia forests in Yunnan, China. Endophytic and saprobic Lasiodiplodia pseudotheobromae and endophytic L. thailandica are new records from this host. The internal transcribed spacers (ITS), part of the translation elongation factor-1α (tef1) and partial β-tubulin (tub2) sequence data were analyzed to investigate the phylogenetic relationships of the new species with other Lasiodiplodia species. Lasiodiplodia magnoliae is phylogenetically sister to L. mahajangana and L. pandanicola but morphologically distinct from L. mahajangana in having larger conidia. Lasiodiplodia endophytica is most closely related to L. iraniensis and L. thailandica and the three species can be distinguished from one another by 2 base pair differences in ITS and three or four base pair differences in tef1. The new collections suggest that Magnolia forest plants are good hosts for Lasiodiplodia species with endophytic and saprobic life-styles.


Phytotaxa ◽  
2017 ◽  
Vol 297 (2) ◽  
pp. 168 ◽  
Author(s):  
ROHIT SHARMA ◽  
GIRISH KULKARNI ◽  
MAHESH S. SONAWANE

The Botryosphaeriales is a cosmopolitan fungal order and genera belonging to it are common opportunistic pathogens which mostly infect woody plants. They cause fruit rot, dieback, trunk rot, canker and similar diseases killing trees of natural forests, plantations and fruit trees. Relatively recently, some new families (including family Aplosporellaceae) had been established within this order delineating from family Botryosphaeriaceae. In the present study, two strains (MMI00067 and MMI00068) were isolated from soil attached to the base of a macrofungal stipe collected from the forest of Anuppur (Amarkantak), Madhya Pradesh, India. Strains were identified by DNA sequence data of four loci viz., internal transcribed spacer (ITS) of rDNA, large subunit rDNA (LSU), translation elongation factor (tef) and partial β-tubulin (βtub). Based on the phylogenetic analysis, a new fungal genus Alanomyces is proposed and is positioned within Aplosporellaceae along with Aplosporella. It is characterized by fast growing, dark greenish-black colony, long neck-like multilocular-papillate, black pycnidia with separate ostiole and small <10 µm in length, cylindrical, hyaline, guttulate spermatia. The genus Alanomyces is phylogenetically distinct from its close relative Aplosporella and proposed herein as a new monotypic genus with A. indica as type species.


2010 ◽  
Vol 100 (12) ◽  
pp. 1340-1351 ◽  
Author(s):  
Juan Moral ◽  
Concepción Muñoz-Díez ◽  
Nazaret González ◽  
Antonio Trapero ◽  
Themis J. Michailides

Species in the family Botryosphaeriaceae are common pathogens causing fruit rot and dieback of many woody plants. In this study, 150 Botryosphaeriaceae isolates were collected from olive and other hosts in Spain and California. Representative isolates of each type were characterized based on morphological features and comparisons of DNA sequence data of three regions: internal transcribed spacer 5.8S, β-tubulin, and elongation factor. Three main species were identified as Neofusicoccum mediterraneum, causing dieback of branches of olive and pistachio; Diplodia seriata, causing decay of ripe fruit and dieback of olive branches; and Botryosphaeria dothidea, causing dalmatian disease on unripe olive fruit in Spain. Moreover, the sexual stage of this last species was also found attacking olive branches in California. In pathogenicity tests using unripe fruit and branches of olive, D. seriata isolates were the least aggressive on the fruit and branches while N. mediterraneum isolates were the most aggressive on both tissues. Isolates of B. dothidea which cause dalmatian disease on fruit were not pathogenic on branches and only weakly aggressive on fruit. These results, together with the close association between the presence of dalmatian disease symptoms and the wound created by the olive fly (Bactrocera oleae), suggest that the fly is essential for the initiation of the disease on fruit. Isolates recovered from dalmatian disease symptoms had an optimum of 26°C for mycelial growth and 30°C for conidial germination, suggesting that the pathogen is well adapted to high summer temperatures. In contrast, the range of water activity in the medium for growth of dalmatian isolates was 0.93 to 1 MPa, which was similar to that for the majority of fungi. This study resolved long-standing questions of identity and pathogenicity of species within the family Botryosphaeriaceae attacking olive trees in Spain and California.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1156-1165 ◽  
Author(s):  
M. A. Bautista-Cruz ◽  
G. Almaguer-Vargas ◽  
S. G. Leyva-Mir ◽  
M. T. Colinas-León ◽  
K. C. Correia ◽  
...  

Persian lime (Citrus latifolia Tan.) is an important and widely cultivated fruit crop in several regions of Mexico. In recent years, severe symptoms of gummosis, stem cankers, and dieback were detected in the Persian lime-producing region in the states of Veracruz and Puebla, Mexico. The aims of this study were to identify the species of Lasiodiplodia associated with these symptoms, determine the distribution of these species, and test their pathogenicity and virulence on Persian lime plants. In 2015, symptomatic samples were collected from 12 commercial Persian lime orchards, and 60 Lasiodiplodia isolates were obtained. Fungal identification of 32 representative isolates was performed using a phylogenetic analysis based on DNA sequence data of the internal transcribed spacer region and part of the translation elongation factor 1-α and β-tubulin genes. Sequence analyses were carried out using the Maximum Likelihood and Bayesian Inference methods. Six Lasiodiplodia species were identified as Lasiodiplodia pseudotheobromae, Lasiodiplodia theobromae, Lasiodiplodia brasiliense, Lasiodiplodia subglobosa, Lasiodiplodia citricola, and Lasiodiplodia iraniensis. All Lasiodiplodia species of this study are reported for the first time in association with Persian lime in Mexico and worldwide. L. pseudotheobromae (46.9% of isolates) was the most frequently isolated species followed by L. theobromae (28.1%) and L. brasiliense (12.5%). Pathogenicity on Persian lime young plants using a mycelial plug inoculation method showed that all identified Lasiodiplodia species were able to cause necrotic lesions and gummosis, but L. subglobosa, L. iraniensis, and L. pseudotheobromae were the most virulent.


Phytotaxa ◽  
2016 ◽  
Vol 260 (2) ◽  
pp. 101 ◽  
Author(s):  
CHANG SUN KIM ◽  
JONG WON JO ◽  
YOUNG-NAM KWAG ◽  
GI-HO SUNG ◽  
JAE-GU HAN ◽  
...  

Thirty-four Lycoperdon specimens from Korea were examined with the internal transcribed spacer (ITS) region of ribosomal DNA sequence data. The result of the ITS sequences phylogenetic analysis indicated that the Korean specimens represented nine different species. To confirm the taxonomic position of these species, we conducted an intensive morphological investigation, and additional phylogenetic investigation of the protein coding regions RNA polymerase subunit II (RPB2) and translation elongation factor 1-alpha (TEF1). We discovered two new species (L. albiperidium and L. subperlatum) and one (L. ericaeum) newly discovered in Korea. Lycoperdon albiperidium is closely related to L. ericaeum based on ITS, RPB2 and TEF1 sequence data, but these species were distinguishable by morphological characteristics, especially the shape of the basidiocarps, the diameter of the eucapillitial threads and the size of the basidospores. Lycoperdon subperlatum is quite similar to the European and American L. perlatum based on morphological characteristics. However, L. subperlatum is clearly distinct from European and American L. perlatum based on ITS, RPB2 and TEF1 sequence data, and somewhat differs from them in macro- and microscopic characteristics. Based on morphological characteristics, L. ericaeum is related to L. subumbrinum and L. lividum but it is distinguishable by the presence of fragile, eucapillitial threads, the diameters of the threads and ITS sequences. Here, we describe four Lycoperdon species collected in Korea.


Sign in / Sign up

Export Citation Format

Share Document