scholarly journals Know your insect: Malpighian tubules in Trichoplusia ni (Lepidoptera: Noctuidae)

2017 ◽  
Vol 3 ◽  
pp. e11827
Author(s):  
Loren Rivera-Vega ◽  
Istvan Mikó
1994 ◽  
Vol 20 (11) ◽  
pp. 2959-2974 ◽  
Author(s):  
P. J. Landolt ◽  
R. R. Heath ◽  
J. G. Millar ◽  
K. M. Davis-Hernandez ◽  
B. D. Dueben ◽  
...  

1999 ◽  
Vol 92 (3) ◽  
pp. 447-450 ◽  
Author(s):  
C. Lydia Wraight ◽  
Ellen S. Green ◽  
May R. Berenbaum

2008 ◽  
Vol 98 (3) ◽  
pp. 317-322 ◽  
Author(s):  
V. Caron ◽  
J.H. Myers

AbstractDevelopment of resistance to insecticides has generally been associated with fitness costs that may be magnified under challenging conditions. Lepidopterans which are resistant to the biopesticide Bacillus thuringiensis subsp. kurstaki (Btk) have been shown to have reduced fitness, such as lower survival when subjected to overwintering stress. Recently, resistance to Btk has been found in some populations of Trichoplusia ni Hübner in greenhouses in British Columbia. This situation provides an opportunity to investigate potential trade-offs between overwintering survival and insecticide resistance in a major pest species. Here, we assess the survival and eventual fecundity of Btk resistant and susceptible T. ni pupae exposed to cool temperatures. Contrary to our expectations, resistant T. ni had higher overwintering survival than susceptible individuals. This is the first account of a potential advantage associated with Btk resistance. Resistant and susceptible moths had reduced fecundity and smaller progeny after cold exposure compared to controls, and this may counteract the survival advantage. Nevertheless, it seems unlikely that this is sufficient to select out the resistant phenotype in the presence of strong selection for resistance and in the absence of immigration of susceptible moths. The appearance of resistance without evidence of a trade-off in overwintering survival presents a major challenge to management in production greenhouses.


2019 ◽  
Vol 48 (3) ◽  
pp. 540-545
Author(s):  
Kieu-Oanh Nguyen ◽  
Sayma Al-Rashid ◽  
M Clarke Miller ◽  
J Tom Diggs ◽  
Evan C Lampert

2020 ◽  
pp. 1-13
Author(s):  
Henry Murillo Pacheco ◽  
Sherah Vanlaerhoven ◽  
M. Angeles Marcos Garcia

Abstract We evaluated the host suitability and related traits of Trichoplusia ni Hübner (Lepidoptera: Noctuidae) and Chrysodeixis chalcites Esper (Lepidoptera: Noctuidae), which is nonnative in North America, for the native parasitoids Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae) and Copidosoma floridanum Ashmead (Hymenoptera: Encyrtidae), and the nonnative parasitoid Cotesia vanessae Reinhard (Hymenoptera: Braconidae). For the larval parasitoid C. sonorensis and C. vanessae trials, three-day-old larvae of both hosts were used, whereas one-day-old eggs of both hosts were used for the egg–larval parasitoid C. floridanum trial. For suitability parameters on each host exposed separately to each of the three parasitoid species, we measured parasitoid emergence (parasitoid success), parasitoids that did not emerge (parasitoid cocoon mortality), the proportion of male offspring (parasitoid sex ratio), hosts that developed into moths (host success), hosts that died without developing into moths or producing a parasitoid (host mortality), parasitoids emerging from cocoon masses (brood size), and the developmental times of parasitoids and hosts. For C. sonorensis, the native host and the nonnative host were found to be similarly suitable. For C. vanessae, the native host was more suitable than the nonnative host. For C. floridanum, the native host was suitable, whereas the nonnative host was not; however, sublethal effects on both the native and nonnative hosts were observed. The differential suitability of the hosts observed in this study contributes to the understanding of this measure as a dynamic factor in the expansion of parasitoids into novel host species.


Sign in / Sign up

Export Citation Format

Share Document