Intelligent Identification of Automatic Parking System Based on Information Fusion

2017 ◽  
Vol 53 (22) ◽  
pp. 125 ◽  
Author(s):  
Haobin JIANG
2020 ◽  
Vol 10 (24) ◽  
pp. 9100
Author(s):  
Chenxu Li ◽  
Haobin Jiang ◽  
Shidian Ma ◽  
Shaokang Jiang ◽  
Yue Li

As a key technology for intelligent vehicles, automatic parking is becoming increasingly popular in the area of research. Automatic parking technology is available for safe and quick parking operations without a driver, and improving the driving comfort while greatly reducing the probability of parking accidents. An automatic parking path planning and tracking control method is proposed in this paper to resolve the following issues presented in the existing automatic parking systems, that is, low degree of automation in vehicle control; lack of conformity between segmented path planning and real vehicle motion models; and low success rates of parking due to poor path tracking. To this end, this paper innovatively proposes preview correction which can be applied to parking path planning, and detects the curvature outliers in the parking path through the preview algorithm. In addition, it is also available for correction in advance to optimize the reasonable parking path. Meanwhile, the dual sliding mode variable structure control algorithm is used to formulate path tracking control strategies to improve the path tracking control effect and the vehicle control automation. Based on the above algorithm, an automatic parking system was developed and the real vehicle test was completed, thus exploring a highly intelligent automatic parking technology roadmap. This paper provides two key aspects of system solutions for an automatic parking system, i.e., parking path planning and path tracking control.


2011 ◽  
Vol 339 ◽  
pp. 28-31
Author(s):  
Hong Mei

An automatic parking controller is proposed. Fuzzy control is taken to simulate the action of experienced driver as an alternative to conventional methods. The angle between the midline of the car and ideal path and the distance between the midpoint of the car and the ideal path are taken as the inputs of the fuzzy controller. The angle of the steering wheel is taken as the output of the fuzzy controller. A set of fuzzy logic rules are build for reasoning. With sensors installed in the car to replace people’s eyes and computer to replace people’s brain, the automatic parking system is more precise and quicker than human’s parking. At last, simulation is made and proved the validity of the proposed method.


2013 ◽  
Vol 49 (11) ◽  
pp. 986-993 ◽  
Author(s):  
Noriyasu NOTO ◽  
Hiroyuki OKUDA ◽  
Yuichi TAZAKI ◽  
Tatsuya SUZUKI ◽  
Soichiro HAYAKAWA ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
pp. 14
Author(s):  
Bingzhan Zhang ◽  
Zhiyuan Li ◽  
Yaoyao Ni ◽  
Yujie Li

In this paper, we focus on the parking path planning and path tracking control under parallel parking conditions with automatic parking system as the research object. In order to solve the problem of discontinuity of curvature in the path planning of traditional arc-straight combined curve, a quintic polynomial is used to smooth the path. we design a path tracking controller based on the incremental model predictive control (MPC). The preview control based on pure tracking algorithm is used as the comparison algorithm for path tracking. The feasibility of the controller is verified by building a Simulink/CarSim co-simulation platform. In addition, the practicality of the parking controller is further verified by using the ROS intelligent car in the laboratory environment.


Sign in / Sign up

Export Citation Format

Share Document