Chapter 1. Effect of soil conservation practices on organic carbon in Vertisols and Luvisols of Northern Italy

Author(s):  
S. Brenna ◽  
A. Rocca ◽  
M. Sciaccaluga ◽  
M. Grandi
2015 ◽  
Vol 7 (1) ◽  
pp. 115-145 ◽  
Author(s):  
Y. Mohawesh ◽  
A. Taimeh ◽  
F. Ziadat

Abstract. Land degradation resulting from improper land use and management is a major cause of declined productivity in the arid environment. The objectives of this study were to examine the effects of a sequence of land use changes, soil conservation measures, and the time since their implementation on the degradation of selected soil properties. The climate for the selected 105 km2 watershed varies from semi-arid sub-tropical to Mediterranean sub-humid. Land use changes were detected using aerial photographs acquired in 1953, 1978, and 2008. A total of 218 samples were collected from 40 sites in three different rainfall zones to represent different land use changes and different lengths of time since the construction of stone walls. Analyses of variance were used to test the differences between the sequences of land use changes (interchangeable sequences of forest, orchards, field crops, and range), the time since the implementation of soil conservation measures, and rainfall on the thickness of the A-horizon, soil organic carbon content, and texture. Soil organic carbon reacts actively with different combinations and sequences of land use changes. The time since stone walls were constructed showed significant impacts on soil organic carbon and the thickness of the surface horizon. The effects of changing the land use and whether the changes were associated with the construction of stone walls, varied according to the annual rainfall. The results help in understanding the effects of land use changes on land degradation processes and carbon sequestration potential and in formulating sound soil conservation plans.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhihai Yang ◽  
Ning Yin ◽  
Amin William Mugera ◽  
Yumeng Wang

PurposeThis paper analysed survey data of 715 rice-producing households in China to assess the determinants of adoption of five mutually exclusive soil conservation practices (SCPs) and their impact on rice yield and chemical fertiliser use.Design/methodology/approachThe multinomial endogenous treatment effects model was used to account for selection bias and endogeneity arising from both observed and unobserved heterogeneity.FindingsFarms that adopted SCPs as a package experienced an increase in rice yield and decrease in chemical fertiliser use. Adoption of SCPs as a package led to a 12.0% increase in yield and 15.2% decrease in chemical fertiliser use; these results have policy implications for the non-point source pollution control in the agricultural sector. In contrast, adoption of straw retention only significantly reduced yield by 4.9% and increased chemical fertiliser use by 18.1%.Originality/valueThe authors evaluate and compare multi-type of SCPs, such as straw retention, deep tillage and use of organic fertiliser, separately or in combination, and their impacts on smallholder farmers’ rice yield and chemical fertiliser usage.


2019 ◽  
Vol 24 (5) ◽  
pp. 529-553 ◽  
Author(s):  
Chandan Singha

AbstractThis study evaluates the effects of vegetative soil conservation practices (afforestation and/or bamboo planting) on farm profit and its components, revenue and variable cost. Since farmers self-select themselves as adopters of conservation measures, there could be a problem of selection bias in evaluating their soil conservation practices. We address the selection bias by using propensity score matching. We also check if there exists spatial spillover in adoption of vegetative conservation measures and how it affects matching. We use primary survey data from the Darjeeling district of the Eastern Himalayan region for the year 2013. Our results suggest strong spatial correlation. We find that the propensity score estimated from the spatial model provides better matches than the non-spatial model. While the results show that vegetative soil conservation can lead to significant gains in revenue, it also increases costs so that no significant gains in profit accrue to farmers.


Agrosearch ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 99
Author(s):  
F.O. Oladipo ◽  
O. Bolarin ◽  
A.K. Daudu ◽  
A.O. Kayode ◽  
P.O. Awoyele

2020 ◽  
Vol 12 (9) ◽  
pp. 1365 ◽  
Author(s):  
Panos Panagos ◽  
Cristiano Ballabio ◽  
Jean Poesen ◽  
Emanuele Lugato ◽  
Simone Scarpa ◽  
...  

Soil erosion is one of the eight threats in the Soil Thematic Strategy, the main policy instrument dedicated to soil protection in the European Union (EU). During the last decade, soil erosion indicators have been included in monitoring the performance of the Common Agricultural Policy (CAP) and the progress towards the Sustainable Development Goals (SDGs). This study comes five years after the assessment of soil loss by water erosion in the EU [Environmental science & policy 54, 438–447 (2015)], where a soil erosion modelling baseline for 2010 was developed. Here, we present an update of the EU assessment of soil loss by water erosion for the year 2016. The estimated long-term average erosion rate decreased by 0.4% between 2010 and 2016. This small decrease of soil loss was due to a limited increase of applied soil conservation practices and land cover change observed at the EU level. The modelling results suggest that, currently, ca. 25% of the EU land has erosion rates higher than the recommended sustainable threshold (2 t ha−1 yr−1) and more than 6% of agricultural lands suffer from severe erosion (11 t ha−1 yr−1). The results suggest that a more incisive set of measures of soil conservation is needed to mitigate soil erosion across the EU. However, targeted measures are recommendable at regional and national level as soil erosion trends are diverse between countries which show heterogeneous application of conservation practices.


Sign in / Sign up

Export Citation Format

Share Document