Production and Infectivity of Some Entomopathogenic Nematodes Against Larvae and Pupae of Cabbage Butterfly, Pieris brassicae L. (Lepidoptera:Pieridae)

2004 ◽  
Vol 2 (1) ◽  
pp. 86-91 ◽  
Author(s):  
A.N. Mahar ◽  
N.D. JAN ◽  
Q.I. Chachar ◽  
G.S. Markhand ◽  
M. Munir ◽  
...  
2021 ◽  
Author(s):  
Kasi Indra Kumar ◽  
Mohinder Singh ◽  
Kanchhi Maya Waiba ◽  
Sharma Monika ◽  
MA Waseem ◽  
...  

Abstract BACKGROUND: Keeping in view the serious health and environmental apprehensions associated with the use of pesticides, entomopathogenic nematodes have the potential to supersede larvicidal activity for the management of various insect pests. RESULT: The lab experiments were conducted to test the pathogenicity of two EPNs species S. feltiaeand H. bacteriophora at different (IJs/cm2) concentrations against cabbage pests. Based on the pathogenicity of strains, only two isolates effectively show larvicidal activity. The native isolate was obtained from soil samples, collected from Rajgarh, Hamachi Pradesh, India. Petri dish bioassay use nematodes S. feltiae HR1 and H. bacteriophora HR2 species dose (0, 10, 20, 40, 80, 160/ IJs/cm2). The highest (%) 2nd instar larval mortality was recorded in treatments with H. bacteriophora and S. feltiae @ 160 /IJs/cm-2 were (72.08, 67.42 percent). And 4th instar larval mortality was recorded in treatment with H. bacteriophora, and S. feltiae @ 160 /IJs/cm-2 were (85.38,69.50 percent). The next best treatments in order of their efficacy’s pupae mortality were H. bacteriophora and S. feltiae @ 160 /IJs/cm-2 (74.12, percent) both are seam result, H. bacteriophora and S. feltiae @ 80 /IJs/cm-2 (62.12, 58.58 percent). Larvicidal activity after 48- and 72-hours exposure, the S. feltiae and H. bacteriophora (1.0, 1.30, 1.60, 1.90, 2.20 /IJs/cm2) showed potent larvicidal activity with LC50, LC75 and LC90 of all instars and pupae show high mortality. The strain inhibits the larval and pupal development 48 to 72 hr exposer time with LC50 range from 11.30 to 39.94, LC75 18.15 to 73.54, LC90 61.80 to 99.21.CONCLUSION: These studies demonstrate the challenge for cabbage butterfly P. brassicae. The local indigenous strains of EPNs (S. feltiae HR1, H. bacteriophora HR2) as a good biocontrol agent against, cruciferous vegetables crop pest P. brassicae.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Indra Kumar Kasi ◽  
Mohinder Singh ◽  
Kanchhi Maya Waiba ◽  
S. Monika ◽  
M. A. Waseem ◽  
...  

Abstract Background Entomopathogenic nematodes (EPNs) have the potential to supersede larvicidal activity for the management of various insect pests. Result Lab experiments were conducted to test the pathogenicity of 2 EPNs local species; Steinernema feltiae and Heterorhabditis bacteriophora at different (IJs/cm2) concentrations against the cabbage butterfly, Pieris brassicae (L.). The native isolate was obtained from soil samples, collected from Rajgarh, Hamachi Pradesh, India. Petri dish bioassay used the EPNs species (S. feltiae HR1 and H. bacteriophora HR2) at the concentrations (0, 10, 20, 40, 80, 160 IJs/cm2). Based on the pathogenicity of the strains, only 2 isolates effectively showed larvicidal activity. The highest (%) (72.08 and 67.42%), at the 2nd instar larval mortality was recorded in the treatments with H. bacteriophora and S. feltiae at160 IJs/cm2, respectively. At the 4th instar larvae, respective larval mortality (85.38, 69.50%) was recorded in treatment with H. bacteriophora, and S. feltiae, respectively, at160 IJs/cm2. In case of pupae, the mortality rates were (62.12, 58.58%) for H. bacteriophora and S. feltiae, respectively, at 160 IJs/cm2; (74 and 12%) for both the tested EPNs, respectively, at 80 IJs/cm2. Percent of P. brassicae larval mortality treated with the tested EPN isolates was significantly higher than the untreated control. Results revealed that the percent of larval mortality significantly increased with the increase in time periods, being maximum at 72 h. S. feltiae and H. bacteriophora, strains showed potent larvicidal activity at low concentration even at 48 and 72 h of exposure. Conclusion This study revealed that the local strains of EPNs (S. feltiae HR1 and H. bacteriophora HR2) were found as a biocontrol agent against P. brassicae.


Steroids ◽  
1981 ◽  
Vol 38 (6) ◽  
pp. 633-650 ◽  
Author(s):  
Philippe Beydon ◽  
Jacques Claret ◽  
Patrick Porcheron ◽  
René Lafont

2002 ◽  
Vol 5 (10) ◽  
pp. 1041-1043 ◽  
Author(s):  
Ahmad Usman Zafar ◽  
Idrees Ahmad Nasir ◽  
Ahmed Ali Shahid ◽  
Muhammad Sarwar Rahi . ◽  
Sheikh Riazuddin .

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Ramandeep Kour ◽  
R. K. Gupta ◽  
Barkat Hussain ◽  
Simranjeet Kour

Abstract Background To manage the cabbage butterfly, Pierisbrassicae (L.) (Lepidoptera: Pieridae), it is not wise to use insecticides on leafy vegetables which are eaten mostly fresh. During the past decades, the efforts to manage the pest, through chemical insecticides have raised serious health. Investigations were carried out to isolate naturally occurring GVs (PbGV) as a potent biopesticide against P.brassicae and to explore their efficacy with the application of phagostimulants. Results Among the four naturally occurring isolates obtained from Northwestern Himalayas, Sudhmahadev isolate was found to be the most promising based on virulence and speed of kill against all the instars tested in the laboratory, showing the natural incidence of PbGV infection in field conditions. In concentration and time–response bioassay, all the isolates of P.brassicae Granulosis virus were found high virulent against second instar larvae of cabbage butterfly. Therefore, for enhanced efficacy of PBGV, its combined application with phagostimulants (Lepidiumsativum + Teepol + jaggery) or sticker (Teepol + jaggery), applied in field trials, resulted into greater mortality of larval instars than the single one. Overall, the results indicated that the introduction of a more isolates PBGV strain into populations of P.brassicae could be of vital importance for eco-friendly suppression of this pest globally with the combination of phagostimulants. The application virus alone with the pre-standardized concentration of 1 × 1012 OBs/ha did not reduce the larval population density to the desirable extent in the greenhouse chamber and therefore was not included in field experiments. Overall, the most promising treatments in reducing the larval population of the pest were PbGV + Teepol + B.thuringiensis (93.49 and 91.39%) and PbGV + Teepol + L.sativum (88.79 and 86.97%) over control in both greenhouse and field trials, respectively. Conclusions In this study, the native isolates of PbGV from different target locations to test their efficacy against different instars of P.brassicae were explored. Using native PBGV isolates with phagostimulant combinations played an important role for regulating the pest effectively. These phagostimulants not only protected the OBs from degradation in the presence of sunlight but also increased the speed of killing. The biocontrol potential of PbGV in both laboratory and field conditions indicated that baculoviruses are sustainable alternative to chemical insecticides.


Sign in / Sign up

Export Citation Format

Share Document