larval mortality
Recently Published Documents


TOTAL DOCUMENTS

758
(FIVE YEARS 287)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Pierre Marie Sovegnon ◽  
Marie Joelle Fanou ◽  
Romaric Akoton ◽  
Oswald Yédjinnavênan Djihinto ◽  
Hamirath Odée Lagnika ◽  
...  

The success achieved in reducing malaria transmission by vector control is threatened by insecticide resistance. To strengthen the current vector control programmes, the non-genetic factors underlying the emergence of insecticide resistance in Anopheles vectors and its widespread need to be explored. This study aimed to assess the effects of larval diet on some life-history traits and pyrethroid-insecticide susceptibility of Anopheles gambiae s.s. Three (3) An. gambiae strains, namely Kisumu (insecticide susceptible), AcerKis (homozygous ace-1 R G119S resistant) and KisKdr (homozygous kdr R L1014F resistant) were fed with three different diets (low, medium, and high) of TetraMin ® Baby fish food. Pre-imaginal developmental time, larval mortality, adult emergence rate and female wing length were measured. Mosquito females were exposed to insecticide-treated net (ITN) PermaNet 2.0 and PermaNet 3.0. In the three An. gambiae strains, significant differences in adult emergence rates ( F = 1054.2; df = 2; p <0.01), mosquito wing length ( F = 970.5; df = 2; p <0.01) and adult survival post insecticide exposure ( χ2 = 173; df = 2; p <0.01), were noticed among the three larval diets. Larvae fed with the low food diets took more time to develop, were smaller at emergence and displayed a short lifespan, while the specimens fed with a high regime developed faster and into big adults. Although being fed with a high diet, none of An. gambiae strain harbouring the kdr R and ace-1 R allele survived 24 hours after exposure against PermaNet 3.0. This study showed that variation in the larval diet significantly impacts An. gambiae life-history traits such as larval mortality and developmental time, adult wing length, and female susceptibility to pyrethroid insecticides. Further investigations through field-based studies would allow an in-depth understanding of the implications of these non-genetic parameters on the physiological traits of malaria vectors and consequently improve resistance management.


2022 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Lucía Guzmán ◽  
Jorge Luis Malla ◽  
Jorge Ramírez ◽  
Gianluca Gilardoni ◽  
James Calva ◽  
...  

Control measures against common cattle tick Rhipicephalus microplus are of the upmost importance because of considerable, deleterious impact on a farm’s economy. Due to resistance phenomena to synthetic acaricides being a constraint in affected farms, the search for plant derivatives as acaricides has increased dramatically in recent years. In this work, essential oils obtained from two Ecuadorian plants, Ambrosia peruviana and Lepechinia mutica (EOAp, EOLm), traditionally used as insecticides in indigenous communities, were studied on larvae and engorged females at the parasitic stages of R. microplus. Larvae and females were treated with five (0.0625, 0.125, 0.25, 0.50 and 1%) and six concentrations (0.125, 0.25, 0.50, 1, 2 and 4%), respectively, of each EOsAp/Lm. A 98–99% larval mortality was achieved with 0.5% of both EOsAp/Lm. EOAp inhibited oviposition and egg hatching up to 82% and 80%, respectively, and had an overall efficacy of 93.12%. Efficacy of EOLm was 72.84%, due to the low influence of EOLm on reproductive parameters. By steam distillation and GC-MS analysis, γ-Curcumene was identified as the main constituent (52.02%) in the EOAp and Shyobunol (10.80%) in EOLm. The results suggest that major components of both essential oils should be further studied as promissory acaricides against R. microplus.


2022 ◽  
Vol 82 ◽  
Author(s):  
L. M. P. Mituiassu ◽  
M. T. Serdeiro ◽  
R. R. B. T. Vieira ◽  
L. S. Oliveira ◽  
M. Maleck

Abstract Mormodica charantia (Curcubitaceae) is a plant with great medicinal potential, also used as an alternative of mosquitoes control as demonstrated by previous studies. We evaluated the larvicidal activity of crude extracts of ethyl acetate, methanol and hexane from flowers and fruits of M. charantia against Aedes aegypti (Culicidae). Flowers and fruits were macerated in methanol, ethyl acetate and hexane. Bioassays were performed with application of the extracts at final concentrations of 1 - 200 µg/mL in the middle of the third instar larvae of A. aegypti (L3). The results showed high toxicity to ethyl acetate extracts from flowers and fruits at concentrations of 200 µg/mL and 100 µg/mL, with 97% and 87% of larvae mortality (L3), respectively. Hexane extract demonstrated low toxicity, while methanol extract exhibited 78% larval mortality. The data suggested that the ethyl acetate extracts of flowers and fruits of M. charantia can effectively contribute to larvicidal activity. In addition, purification of M. charantia extracts may lead to a promising larvicidal activity to control the A. aegypti population.


2021 ◽  
Vol 13 (2) ◽  
pp. 137-146
Author(s):  
Rizki Awaluddin ◽  
Binti Sholihatin ◽  
Nurul Marfu'ah ◽  
Solikah Ana Estikomah

Abstract. Aedes sp. is a vector of the dengue virus that causes Dengue Hemorrhagic Fever (DHF).Larvicides are the optimal method for controlling mosquito development. Temephos is a larvicidalagent of the organophosphate group which is reported to cause side eff ects and ecological hazards,as well as resistance based on reports in several country. This study aims to determine the larvicidalactivity of the n-hexane fraction of Morinda citrifolia leaf ethanol extract on Aedes sp. The compoundgroups in the fraction were identifi ed using TLC through UV light and spray reagents. There were sixtypes of treatment including four concentration fractions (400, 600, 800, and 1000 ppm) as treatment,positive control (temephos 1%) and negative control 1% acetone solution. Twenty-fi ve mosquito larvaeof Aedes sp. tested for each treatment. Larval mortality was recorded and LC50 and LC99 values wereanalyzed using the probit. The results showed that the TLC test of the n-hexane fraction was positivefor terpenoids, anthraquinones, phenols, tannins, and fl avonoids. The results showed that the LC50 andLC99 values were 1040 ppm and 2439 ppm. Therefore, the n-hexane fraction of the ethanol extract hadlarvicidal activity on Aedes sp with li le toxicity.


Author(s):  
S. Balpande ◽  
A. S. Yadav

Galleria mellonella larvae feed on wax, pollen, honey and damage the combs with in active bee colonies and storage condition. Galleria mellonella larvae can bore tunnel and feed around the midrib base of the wax comb. Larvae produce silk fibers that can trap bee brood cells. Comb is completely covered with webbing and extracted matter of the larvae condition described as “Galleriasis”.  The study was carried out at Apiculture Lab of RVSKVV-ZARS-Krishi Vigyan Kendra, Morena (M.P.) during 2019-20. Different three concentration of bio-pesticides viz., Bacillus thuringiensis Kurstaki  (1, 1.5 and 2%), custard apple seed extract (2, 4and 6%) and Neem Oil (1, 2 and 3%) were used against the Galleria mellonella to assess the effect of larval mortality at 24, 48, 72 and 96 hours after treatment. There was no significant effect showed in all the treatments after 24 hours. The maximum mortality of Galleria mellonella larvae was recorded in Bacillus thuringiensis Kurstaki 2.0 percent concentration (46.67, 87.08 and 96.67%) after 48, 72 and 96 hours respectively and it was at par with custard apple seed extract 6.0 percent concentration (45.83, 85.0 and 93.75%). Neem oil 3.0 percent concentration expressed 38.33, 75.42 and 87.50 percent larval mortality after 48, 72 and 96 hours respectively. Whereas minimum mortality was noticed in Neem oil 1.0 percent at 48 hours (22.08%), at 72 hours (37.08%) and at 96 hours (56.25%) among the treatments. The higher concentration of all the three bio-pesticides was proved effectiveness against Galleria mellonella during investigation.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1256
Author(s):  
Saqer S. Alotaibi ◽  
Hadeer Darwish ◽  
Sarah Alharthi ◽  
Akram Alghamdi ◽  
Ahmed Noureldeen ◽  
...  

Ectomyelois ceratoniae (Lepidoptera: Pyralidae) is the primary pest of pomegranates in Saudi Arabia and is mostly controlled using broad-spectrum pesticides. Providing environmentally sound choices to limit reliance on chemical management is a major challenge in the control of E. ceratoniae and, as a consequence, in the protection of pomegranate crops from its invasion. Entomopathogenic bacteria (EPB) symbiotically associated with entomopathogenic nematodes (EPNs) are well-known biocontrol agents of soil-dwelling or aerial pests. The bacterium symbiont (EPB) is the real insect-killing biocontrol agent, while the nematode (EPN) serves as a vector. We wondered whether the EPB vector, which is extremely vulnerable to adverse environmental conditions, like drought, high temperatures, and repellent soil microorganisms, could be omitted. We intended to evaluate the biocontrol potential of directly applied EPB cells and cell-free culture media (CFCM) on the larval instar E. ceratoniae. Xenorhabdus budapestensis DSM 16342 (EMA), X. szentirmaii DSM 16338 (EMC), and Photorhabdus luminescens ssp. laumondi (TT01) strains were used. After three days of exposure, the cells of EMA, EMC, and TT01 strains resulted in 100%, 88%, and 79.3% larval mortality rates, respectively. The applied EMA CFCM resulted in 53.7% larval mortality, indicating the presences of (at least) one extremely strong component produced by EMA. We concluded that the direct application of either the EPB cells or the CFCM must be a prospective alternative biocontrol of E. ceratoniae, especially to protect the important fruit (pomegranate, Punica granatum) cultivars. Especially, newly identified local EPB isolates could be applied as bio-pesticides for integrated management practices or organic pomegranate production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marta Rodrigues de Oliveira ◽  
Ricardo de Melo Katak ◽  
Gilvan Ferreira da Silva ◽  
Osvaldo Marinotti ◽  
Olle Terenius ◽  
...  

The global increase in diseases transmitted by the vector Aedes aegypti, new and re-emerging, underscores the need for alternative and more effective methods of controlling mosquitoes. Our aim was to identify fungal strains from the Amazon rain forest that produce metabolites with larvicidal activity against Aedes aegypti. Thirty-six fungal strains belonging to 23 different genera of fungi, isolated from water samples collected in the state of Amazonas, Brazil were cultivated. The liquid medium was separated from the mycelium by filtration. Medium fractions were extracted with ethyl acetate and isopropanol 9:1 volume:volume, and the mycelia with ethyl acetate and methanol 1:1. The extracts were vacuum dried and the larvicidal activity was evaluated in selective bioassays containing 500 μg/ml of the dried fungal extracts. Larval mortality was evaluated up to 72 h. None of the mycelium extracts showed larvicidal activity greater than 50% at 72 h. In contrast, 15 culture medium extracts had larvicidal activity equal to or greater than 50% and eight killed more than 90% of the larvae within 72 h. These eight extracts from fungi belonging to seven different genera (Aspergillus, Cladosporium, Trichoderma, Diaporthe, Albifimbria, Emmia, and Sarocladium) were selected for the determination of LC50 and LC90. Albifimbria lateralis (1160) medium extracts presented the lowest LC50 value (0.268 μg/ml) after 24 h exposure. Diaporthe ueckerae (1203) medium extracts presented the lowest value of LC90 (2.928 μg/ml) at 24 h, the lowest values of LC50 (0.108 μg/ml) and LC90 (0.894 μg/ml) at 48 h and also at 72 h (LC50 = 0.062 μg/ml and LC90 = 0.476 μg/ml). Extracts from Al. lateralis (1160) and D. ueckerae (1203) showed potential for developing new, naturally derived products, to be applied in integrated vector management programs against Ae. aegypti.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3515
Author(s):  
Nicola Francesco Addeo ◽  
Simone Vozzo ◽  
Giulia Secci ◽  
Vincenzo Mastellone ◽  
Giovanni Piccolo ◽  
...  

Hermetia illucens larvae (five days old) were farmed on broiler feed (control diet), a vegetable diet (V100), a 50% of vegetable diet + 50% of butchery wastes (V50 + B50), and a 75% of vegetable diet + 25% of butchery wastes (V75 + B25) to evaluate their suitability. Ten kilograms of substrate and 6000 larvae composed each replicate (nine per group). Larvae were weighed and measured every two days until the 25% developed into prepupae. Larval mortality and growing indexes were calculated. Substrates, larvae, and frass chemical composition were analyzed. Larvae oxidative status and stability were measured in hemolymph and body. The V100 larvae showed the lowest live weight, length, thickness, and growth rate but had low mortality rate and high substrate reduction index and protein conversion ratio. The V100 larvae had similar protein to and lower lipids than the control ones, while the V50 + B50 and V75 + B25 larvae contained higher lipids and lower protein than the others. Despite the vegetable wastes, at different levels, the reactive oxygen species content decreased in hemolymph, and the V100 diet depressed growth performance and should be avoided. The use of butchery wastes combined with vegetable ingredients can be a suitable alternative to balance the high level of lipid and the low content of protein.


Author(s):  
Seema Ramniwas ◽  
Divya Singh

Menthol extracts of four local plants (Ocimum tenuiflorum, Hibiscus, Mentha longifolia and Bougainvillea glabra) were analysed to check their toxicity on third instar larvae of B. dorsalis by estimating the larval mortality for four plant extracts and different times exposure (1-5 hr) and measured LT50 value for each plant extract. Larval mortality varies for extract of each studied plant as Ocimum tenuiflorum showed its highest value of 56.68% at 4.57hr, for hibiscus it was 72% at 3.5 hr., for Mentha longifolia it was 95.23% at 4 hr., while for Bougainvillea glabra it was 100% at 2 hr. exposure. The LT50 values for B. dorsalis varying from 1.011 for Bougainvillea glabra to 2.946 for Ocimum tenuiflorum whereas LT50 values were 1.402 and 1.123, forHibiscus and Mentha longifolia respectively. Present study results showed that Bougainvillea glabra was highly toxic whereas Ocimum tenuiflorum shows least toxicity.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Desta Ejeta ◽  
Ansha Asme ◽  
Animut Asefa

Abstract Background The emergence and spread of resistant strains of malaria vectors to chemical insecticides are becoming major problems for malaria vector management. Natural plant products have a vital role to play in the current challenge of malaria control. The current study was conducted to evaluate insecticidal effect of ethnobotanical plant extracts against the primary malaria vector, Anopheles arabiensis in northwestern Ethiopia. Methods Primarily, ethnobotanical plants used for Anopheles mosquito control were surveyed in Dangur district, northwestern Ethiopia. Insecticide-susceptible strains of Anopheles arabiensis mosquito were reared in the insectary of the Tropical and Infectious Diseases Research Centre, Assosa University. After surveying plants used for mosquito control in local people, four frequently used plants were identified for extraction. The larvicidal and adulticidal potential of frequently used plant extracts against susceptible strains of the laboratory colony were evaluated. Results A total of 15 plants were identified as ethnobotanical plants that help local people with mosquito control. Azadirachta indica, Ocimum lamiifolium, Ocimum americanum, Moringa olifeira leaf, and Moringa olifeira seed species of local plants were found to be frequently used to kill and/or repel mosquitoes in the study district. All the plant extracts were found to have potential larvicidal activity against fourth instar larvae of An. arabiensis and only ethanol and methanol extract of Azadirachta indica and Ocimum lamiifolium were found to have potential adulticidal effect against adult of An. arabiensis. The highest larvicidal activity was observed in ethanol extract of Azadirachta indica with 95% larval mortality and lowest Lethal Concentration 50 (LC 50) of 40.73parts per million (ppm) and LC90 of 186.66 ppm. The highest adulticidal activity was observed in methanol extract of Azadirachta indica with 75% adult mortality at 300 ppm and lowest LC50 of 106.65 ppm and LC90 of 1,293 ppm. The lowest larvicidal and adulticidal activity was observed in methanol extracts of Ocimum lamiifolium with 63.35% larval mortality and leaf extract of Moringa olifeira with 50% adult mortality at 300 ppm, respectively. Conclusion Ethanol extract of Azadirachta indica exerted a remarkable larvicidal effect against An. arabiensis and thus it can be used for botanical mosquito insecticide development. Since the current finding is based on susceptible strain of An. arabiensis, further work on wild mosquitoes is recommended.


Sign in / Sign up

Export Citation Format

Share Document