pupal development
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 36)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Deepika Vasudevan ◽  
Hidetaka Katow ◽  
Huai-Wei Huang ◽  
Grace Tang ◽  
Hyung Don Ryoo

Metazoans have evolved various quality control mechanisms to cope with cellular stress inflicted by external and physiological conditions. ATF4 is a major effector of the Integrated Stress Response (ISR), an evolutionarily conserved pathway that mediates adaptation to various cellular stressors. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and in adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap MiMIC insertion in the crc locus generates a crc-GFP fusion protein that allows visualization of crc activity in vivo. This allele also acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows crc-GFP induction in a Drosophila model for Retinitis Pigmentosa (RP). This crc allele renders flies more vulnerable to amino acid deprivation and age-dependent retinal degeneration. These mutants also show defects in wing veins and oocyte maturation. Together, our data reveal previously unknown roles for crc in development, cellular homeostasis and photoreceptor survival.


Cell Reports ◽  
2021 ◽  
Vol 37 (13) ◽  
pp. 110151
Author(s):  
Shane Chen ◽  
Maria Lyanguzova ◽  
Ross Kaufhold ◽  
Karen M. Plevock Haase ◽  
Hangnoh Lee ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Amy Reilein ◽  
Helen V Kogan ◽  
Rachel Misner ◽  
Karen Sophia Park ◽  
Daniel Kalderon

Production of proliferative Follicle Cells (FCs) and quiescent Escort Cells (ECs) by Follicle Stem Cells (FSCs) in adult Drosophila ovaries is regulated by niche signals from anterior (Cap Cells, ECs) and posterior (polar FCs) sources. Here we show that ECs, FSCs and FCs develop from common pupal precursors, with different fates acquired by progressive separation of cells along the AP axis and a graded decline in anterior cell proliferation. ECs, FSCs and most FCs derive from Intermingled Cell (IC) precursors interspersed with germline cells. Precursors also accumulate posterior to ICs before engulfing a naked germline cyst projected out of the germarium to form the first egg chamber and posterior polar FC signaling center. Thus, stem and niche cells develop in appropriate numbers and spatial organization through regulated proliferative expansion together with progressive establishment of spatial signaling cues that guide adult cell behavior, rather than through rigid early specification events.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009801
Author(s):  
Karl M. Glastad ◽  
Linyang Ju ◽  
Shelley L. Berger

A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.


2021 ◽  
Author(s):  
Bénédicte M. Lefèvre ◽  
Michael Lang

Rearing temperature is correlated with the timing and speed of development in a wide range of poikiloterm animals that do not regulate their body temperature. However, exceptions exist, especially in species that live in environments with high temperature extremes or oscillations. Drosophila pachea is endemic to the Sonoran desert in Mexico, in which temperatures and temperature variations are extreme. We wondered if the developmental timing in D. pachea may be sensitive to differing rearing temperatures or if it remains constant. We determined the overall timing of the Drosophila pachea life-cycle at 25°C and 29°C. The duration of pupal development was similar at both temperatures although the relative progress differed at particular stages. Thus, D. pachea may have evolved mechanisms to buffer temperature influence on developmental speed, potentially to ensure proper development and individual's fitness in desert climate conditions.


Author(s):  
Allan T Showler ◽  
Jessica L Harlien

Abstract The horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae), is an important bloodsucking ectoparasite of cattle throughout much of the world. The fly is mostly controlled using conventional synthetic insecticides but as concerns about resistance increase, alternative tactics have come under heightened scrutiny. Four desiccant dust products: Surround WP, a kaolin clay-based wettable powder; CimeXa, comprised of silica aerogel; Drione, silica aerogel + pyrethrins; and EcoVia, silica aerogel + thyme oil, were assessed for their lethal effects against horn fly eggs, larvae, pupae, and adults, under laboratory conditions. Although Surround WP and CimeXa did not prevent egg hatching and (when mixed with manure substrate) pupal development, the two products were associated with moderate reductions of emerged adults, and with complete adult contact mortality within 6 hr and 24 hr, respectively. Drione and EcoVia eliminated egg hatching, pupal development, and adults within 15 min to 1 hr, respectively, whether the flies were exposed to treated filter paper substrate or exposed by immersion in the dusts. Implications for horn fly control and advantages of inert desiccant dust formulations are discussed.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 699
Author(s):  
Qi Wang ◽  
Yu-Tong Luo ◽  
Yong Wang ◽  
De-Yi Wang ◽  
Xiao-Xia Duan ◽  
...  

The Chinese oak silkworm is commonly used in pupal diapause research. In this study, a long photoperiod was used to trigger pupal diapause termination. Genes encoding three hormones, namely prothoracicotropic hormone (PTTH), ecdysis triggering hormone (ETH), and eclosion hormone (EH), were studied. Additionally, ecdysteroids (mainly 20-hydroxyecdysone, 20E) were quantified by HPLC. Pupal diapause stage was determined by measuring respiratory intensity. The pupae enter a low metabolic rate, which starts approximately 1 month after pupal emergence. ApPTTH expression showed a small increase at 14 days and then a larger increase from 35 days under the long photoperiod treatment. A similar pattern was observed for the titer of 20E in the hemolymph. However, ApETH expression later increased under the long photoperiod treatment (42 days) just before eclosion. Moreover, ApEH expression increased from 21 to 35 days, and then decreased before ecdysis. These results suggest that hormone-related gene expression is closely related to pupal development. Our study lays a foundation for future diapause studies in A. pernyi.


2021 ◽  
Author(s):  
Suhrid Ghosh ◽  
Weihua Leng ◽  
Michaela Wilsch-Brauninger ◽  
Pierre Leopold ◽  
Suzanne Eaton

Insulin/IGF signalling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides (Ilp) is produced by brain neurosecretory cells and exerts systemic functions. Here, we describe the local uptake and storage of Ilps in the Corpora Cardiaca (CC), a group of alpha cell homolog that produces the glucagon-like hormone AKH. Dilp uptake relies on the expression of Impl2, an IGF-BP that accumulates in the CCs. During nutrient shortage, this specific reserve of Ilps is released and activates IIS in a paracrine manner in the prothoracic gland, securing accelerated entry into pupal development through the production of the steroid hormone ecdysone. We therefore uncover a sparing mechanism whereby local Ilp storage and release activates the production of steroids and ensures early developmental progression in adverse food conditions.


2021 ◽  
Author(s):  
Deepika Vasudevan ◽  
Hidetaka Katow ◽  
Grace Tang ◽  
Hyung Don Ryoo

Metazoans have evolved various stress response mechanisms to cope with cellular stress inflicted by external and physiological conditions. The Integrated Stress Response (ISR) is an evolutionarily conserved pathway that mediates adaptation to cellular stress via the transcription factor, ATF4. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap MiMIC insertion in the crc locus generates a crc-GFP fusion protein that allows visualization of crc activity in vivo, and acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows crc-GFP induction in a Drosophila model for Retinitis Pigmentosa (RP). This crc allele renders photoreceptors more vulnerable to age-dependent retinal degeneration. crc mutant adult animals also show greater susceptibility to amino acid deprivation and reduced levels of known crc transcriptional targets. Furthermore, this mutant allele shows defects in wing veins and oocyte maturation, uncovering previously unknown roles for crc in the development of these tissues. Together, our data establish physiological and pathological functions of crc-mediated ISR in adult Drosophila tissues.


Sign in / Sign up

Export Citation Format

Share Document