scholarly journals Singular solutions of a Hénon equation involving a nonlinear gradient term

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Craig Cowan ◽  
Abdolrahman Razani

<p style='text-indent:20px;'>Here, we consider positive singular solutions of</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{array}{lcc} -\Delta u = |x|^\alpha |\nabla u|^p &amp; \text{in}&amp; \Omega \backslash\{0\},\\ u = 0&amp;\text{on}&amp; \partial \Omega, \end{array} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a small smooth perturbation of the unit ball in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ p $\end{document}</tex-math></inline-formula> are parameters in a certain range. Using an explicit solution on <inline-formula><tex-math id="M5">\begin{document}$ B_1 $\end{document}</tex-math></inline-formula> and a linearization argument, we obtain positive singular solutions on perturbations of the unit ball.</p>

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Ryuji Kajikiya

AbstractIn this paper we study the generalized Hénon equation in the unit ball, where the coefficient function may or may not change its sign. We prove that the least energy solution is not radial and moreover we show the existence of a group invariant positive solution without radial symmetry.


2007 ◽  
Vol 09 (05) ◽  
pp. 639-680 ◽  
Author(s):  
J. DÁVILA ◽  
L. DUPAIGNE

The equation -Δu = λeu posed in the unit ball B ⊆ ℝN, with homogeneous Dirichlet condition u|∂B = 0, has the singular solution [Formula: see text] when λ = 2(N - 2). If N ≥ 4 we show that under small deformations of the ball there is a singular solution (u,λ) close to (U,2(N - 2)). In dimension N ≥ 11 it corresponds to the extremal solution — the one associated to the largest λ for which existence holds. In contrast, we prove that if the deformation is sufficiently large then even when N ≥ 10, the extremal solution remains bounded in many cases.


2019 ◽  
Vol 19 (4) ◽  
pp. 757-770 ◽  
Author(s):  
Pablo Figueroa ◽  
Sérgio L. N. Neves

AbstractWe consider the Hénon problem\left\{\begin{aligned} &\displaystyle{-}\Delta u=\lvert x\rvert^{\alpha}u^{% \frac{N+2+2\alpha}{N-2}-\varepsilon}&&\displaystyle\phantom{}\text{in }B_{1},% \\ &\displaystyle u>0&&\displaystyle\phantom{}\text{in }B_{1},\\ &\displaystyle u=0&&\displaystyle\phantom{}\text{on }\partial B_{1},\end{% aligned}\right.where {B_{1}} is the unit ball in {\mathbb{R}^{N}} and {N\geqslant 3}. For {\varepsilon>0} small enough, we use α as a parameter and prove the existence of a branch of nonradial solutions that bifurcates from the radial one when α is close to an even positive integer.


2013 ◽  
Vol 88 (1) ◽  
pp. 1-11
Author(s):  
HAIYANG HE

AbstractIn this paper, we consider the following Robin problem:$$\begin{eqnarray*}\displaystyle \left\{ \begin{array}{ @{}ll@{}} \displaystyle - \Delta u= \mid x{\mathop{\mid }\nolimits }^{\alpha } {u}^{p} , \quad & \displaystyle x\in \Omega , \\ \displaystyle u\gt 0, \quad & \displaystyle x\in \Omega , \\ \displaystyle \displaystyle \frac{\partial u}{\partial \nu } + \beta u= 0, \quad & \displaystyle x\in \partial \Omega , \end{array} \right.&&\displaystyle\end{eqnarray*}$$where$\Omega $is the unit ball in${ \mathbb{R} }^{N} $centred at the origin, with$N\geq 3$,$p\gt 1$,$\alpha \gt 0$,$\beta \gt 0$, and$\nu $is the unit outward vector normal to$\partial \Omega $. We prove that the above problem has no solution when$\beta $is small enough. We also obtain existence results and we analyse the symmetry breaking of the ground state solutions.


Author(s):  
Yuxia Guo ◽  
Bo Li ◽  
Yi Li

We study the following polyharmonic Hénon equation:where (m)* = 2N/(N – 2m) is the critical exponent, B1(0) is the unit ball in ℝN, N ⩾ 2m + 2 and K(|y|) is a bounded function. We prove the existence of infinitely many non-radial positive solutions, whose energy can be made arbitrarily large.


Sign in / Sign up

Export Citation Format

Share Document