gelfand problem
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 0)

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2137
Author(s):  
Huizeng Qin ◽  
Youmin Lu

We investigate the well-known one-dimensional perturbed Gelfand boundary value problem and approximate the values of α0,λ* and λ* such that this problem has a unique solution when 0<α<α0 and λ>0, and has three solutions when α>α0 and λ*<λ<λ*. The solutions of this problem are always even functions due to its symmetric boundary values and autonomous characteristics. We use numerical computation to show that 4.0686722336<α0<4.0686722344. This result improves the existing result for α0≈4.069 and increases the accuracy of α0 to 10−8. We developed an algorithm that reduces errors and increases efficiency in our computation. The interval of λ for this problem to have three solutions for given values of α is also computed with accuracy up to 10−14.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1606
Author(s):  
Shugui Kang ◽  
Youmin Lu ◽  
Wenying Feng

We study a two-point Boundary Value Problem depending on two parameters that represents a mathematical model arising from the combustion theory. Applying fixed point theorems for concave operators, we prove uniqueness, existence, upper, and lower bounds of positive solutions. In addition, we give an estimation for the value of λ* such that, for the parameter λ∈[λ*,λ*], there exist exactly three positive solutions. Numerical examples are presented to illustrate various cases. The results complement previous work on this problem.


Author(s):  
Frederick Foss ◽  
Roland Glowinski

In this article, we discuss the numerical solution of the Bingham-Bratu-Gelfand (BBG) problem, a non-smooth nonlinear eigenvalue problem associated with the total variation integral and an exponential nonlinearity. Using the fact that one can view the nonlinear eigenvalue as a possible Lagrange multiplier associated with a constrained minimization problem from Calculus of Variations, we associate with the BBG problem an initial value problem (dynamical flow), well suited to time-discretization by operator-splitting. Various mathematical results are proved, including the convergence of a finite element approximation of the BBG problem. The operator-splitting/finite element methodology discussed in this article is robust and easy to implement. We validate the implementation by first solving the classical Bratu-Gelfand problem, obtaining and reporting results consistent with those found in the literature. We then explore the full capability of the implementation by solving the viscoplastic BBG problem, obtaining and reporting results for several values of the plasticity yield. We conclude by exhibiting and discussing the bifurcation diagrams corresponding to these same values of the plasticity yield, and by reporting and examining some finer details of the solver discovered during the course of our investigation.


2021 ◽  
Vol 10 (1) ◽  
pp. 1316-1327
Author(s):  
Ali Hyder ◽  
Wen Yang

Abstract We analyze stable weak solutions to the fractional Geľfand problem ( − Δ ) s u = e u i n Ω ⊂ R n . $$\begin{array}{} \displaystyle (-{\it\Delta})^su = e^u\quad\mathrm{in}\quad {\it\Omega}\subset\mathbb{R}^n. \end{array}$$ We prove that the dimension of the singular set is at most n − 10s.


Author(s):  
Vasile Marinca ◽  
Nicolae Herisanu ◽  
Bogdan Marinca
Keyword(s):  

2018 ◽  
Vol 99 (3) ◽  
pp. 78-91
Author(s):  
S. V. Kolosova ◽  
◽  
V. S. Lukhanin ◽  
M. V. Sidorov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document