radial solution
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Angela Slavova ◽  
Petar Popivanov

AbstractThis paper deals with boundary value problems for local and nonlocal Laplace operator in 2D with exponential nonlinearities, the so-called Liouville type equations. They include the mean field equation and other equations arising in the statistical mechanics. Existence results into an explicit form for the Dirichlet problem in the unit disc $B_{1} \subset {\mathbf{R}}^{2} $ B 1 ⊂ R 2 and in the participation of positive parameters in the right-hand sides are proved in Theorems 2 and 3. Theorem 2 is illustrated by several examples including an application to the differential geometry. In Theorem 4 global radial solution of the Cauchy problem with constant data at $\partial B_{1} $ ∂ B 1 and under appropriate conditions is constructed. It develops logarithmic singularities for $r = 0 $ r = 0 , $r = \infty $ r = ∞ . An illustrative example to Theorem 4 in the case of two exponents is given at the end of the paper.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Maria Alessandra Ragusa ◽  
Abdolrahman Razani ◽  
Farzaneh Safari

AbstractIn this paper, using variational methods, we prove the existence of at least one positive radial solution for the generalized $p(x)$ p ( x ) -Laplacian problem $$ -\Delta _{p(x)} u + R(x) u^{p(x)-2}u=a (x) \vert u \vert ^{q(x)-2} u- b(x) \vert u \vert ^{r(x)-2} u $$ − Δ p ( x ) u + R ( x ) u p ( x ) − 2 u = a ( x ) | u | q ( x ) − 2 u − b ( x ) | u | r ( x ) − 2 u with Dirichlet boundary condition in the unit ball in $\mathbb{R}^{N}$ R N (for $N \geq 3$ N ≥ 3 ), where a, b, R are radial functions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 11 (1) ◽  
pp. 294-302
Author(s):  
Gal Davidi

Abstract In this work an analysis of the radial stress and velocity fields is performed according to the J 2 flow theory for a rigid/perfectly plastic material. The flow field is used to simulate the forming processes of sheets. The significant achievement of this paper is the generalization of the work by Nadai & Hill for homogenous material in the sense of its yield stress, to a material with general transverse non-homogeneity. In Addition, a special un-coupled form of the system of equations is obtained where the task of solving it reduces to the solution of a single non-linear algebraic differential equation for the shear stress. A semi-analytical solution is attained solving numerically this equation and the rest of the stresses term together with the velocity field is calculated analytically. As a case study a tri-layered symmetrical sheet is chosen for two configurations: soft inner core and hard coating, hard inner core and soft coating. The main practical outcome of this work is the derivation of the validity limit for radial solution by mapping the “state space” that encompasses all possible configurations of the forming process. This configuration mapping defines the “safe” range of configurations parameters in which flawless processes can be achieved. Several aspects are researched: the ratio of material's properties of two adjacent layers, the location of layers interface and friction coefficient with the walls of the dies.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuhao Yan

<p style='text-indent:20px;'>In this paper, we consider the weighted fourth order equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Delta(|x|^{-\alpha}\Delta u)+\lambda \text{div}(|x|^{-\alpha-2}\nabla u)+\mu|x|^{-\alpha-4}u = |x|^\beta u^p\quad \text{in} \quad \mathbb{R}^n \backslash \{0\}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ n\geq 5 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ -n&lt;\alpha&lt;n-4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ p&gt;1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ (p,\alpha,\beta,n) $\end{document}</tex-math></inline-formula> belongs to the critical hyperbola</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \frac{n+\alpha}{2}+\frac{n+\beta}{p+1} = n-2. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>We prove the existence of radial solutions to the equation for some <inline-formula><tex-math id="M5">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>. On the other hand, let <inline-formula><tex-math id="M7">\begin{document}$ v(t): = |x|^{\frac{n-4-\alpha}{2}}u(|x|) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ t = -\ln |x| $\end{document}</tex-math></inline-formula>, then for the radial solution <inline-formula><tex-math id="M9">\begin{document}$ u $\end{document}</tex-math></inline-formula> with non-removable singularity at origin, <inline-formula><tex-math id="M10">\begin{document}$ v(t) $\end{document}</tex-math></inline-formula> is a periodic function if <inline-formula><tex-math id="M11">\begin{document}$ \alpha \in (-2,n-4) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> satisfy some conditions; while for <inline-formula><tex-math id="M14">\begin{document}$ \alpha \in (-n,-2] $\end{document}</tex-math></inline-formula>, there exists a radial solution with non-removable singularity and the corresponding function <inline-formula><tex-math id="M15">\begin{document}$ v(t) $\end{document}</tex-math></inline-formula> is not periodic. We also get some results about the best constant and symmetry breaking, which is closely related to the Caffarelli-Kohn-Nirenberg type inequality.</p>


2019 ◽  
Vol 65 (3) ◽  
pp. 261
Author(s):  
Mohsen Fathi

In this paper we calculate the kinematical quantities possessed by Raychaudhuri equations, tocharacterize a congruence of time-like integral curves, according to the vacuum radial solution of Weyl theory of gravity. Also the corresponding flows are plotted for denfinite values of constants.


2018 ◽  
Vol 24 (4) ◽  
pp. 1625-1644 ◽  
Author(s):  
Alberto Boscaggin ◽  
Francesca Colasuonno ◽  
Benedetta Noris

For 1 < p < ∞, we consider the following problem      −Δpu = f(u),   u > 0 in Ω,   ∂νu = 0 on ∂Ω, where Ω ⊂ ℝN is either a ball or an annulus. The nonlinearity f is possibly supercritical in the sense of Sobolev embeddings; in particular our assumptions allow to include the prototype nonlinearity f(s) = −sp−1 + sq−1 for every q > p. We use the shooting method to get existence and multiplicity of non-constant radial solutions. With the same technique, we also detect the oscillatory behavior of the solutions around the constant solution u ≡ 1. In particular, we prove a conjecture proposed in [D. Bonheure, B. Noris and T. Weth, Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 573−588], that is to say, if p = 2 and f′ (1) > λradk + 1, with λradk + 1 the (k + 1)-th radial eigenvalue of the Neumann Laplacian, there exists a radial solution of the problem having exactly k intersections with u ≡ 1, for a large class of nonlinearities.


Sign in / Sign up

Export Citation Format

Share Document