Infinitely many non-radial solutions for the polyharmonic Hénon equation with a critical exponent

Author(s):  
Yuxia Guo ◽  
Bo Li ◽  
Yi Li

We study the following polyharmonic Hénon equation:where (m)* = 2N/(N – 2m) is the critical exponent, B1(0) is the unit ball in ℝN, N ⩾ 2m + 2 and K(|y|) is a bounded function. We prove the existence of infinitely many non-radial positive solutions, whose energy can be made arbitrarily large.

2019 ◽  
Vol 150 (1) ◽  
pp. 73-102 ◽  
Author(s):  
Alberto Boscaggin ◽  
Francesca Colasuonno ◽  
Benedetta Noris

AbstractLet 1 < p < +∞ and let Ω ⊂ ℝN be either a ball or an annulus. We continue the analysis started in [Boscaggin, Colasuonno, Noris, ESAIM Control Optim. Calc. Var. (2017)], concerning quasilinear Neumann problems of the type $-\Delta _pu = f(u),\quad u > 0\,{\rm in }\,\Omega ,\quad \partial _\nu u = 0\,{\rm on }\,\partial \Omega .$We suppose that f(0) = f(1) = 0 and that f is negative between the two zeros and positive after. In case Ω is a ball, we also require that f grows less than the Sobolev-critical power at infinity. We prove a priori bounds of radial solutions, focussing in particular on solutions which start above 1. As an application, we use the shooting technique to get existence, multiplicity and oscillatory behaviour (around 1) of non-constant radial solutions.


1992 ◽  
Vol 122 (1-2) ◽  
pp. 161-175 ◽  
Author(s):  
Deng Yinbing

SynopsisIn this paper we discuss the problemWe show that for c > 0 there exists a positive constant μ* such that (*)μ possesses at least one solution if μ ∈ (0, μ*) and no solutions if μ > μ*. Furthermore, there exists a positive constant μ**≦μ* such that (*)μ possesses at least two solutions if μ∈(0, μ**), 2<N<6. For N≧6, μ∈(0,μ**), we show that problem (*)μ possesses a unique solution if f(x) is radial with f′(r) < 0(r = |x|).


Author(s):  
Xiyou Cheng ◽  
Lei Wei ◽  
Yimin Zhang

We consider the boundary Hardy–Hénon equation \[ -\Delta u=(1-|x|)^{\alpha} u^{p},\ \ x\in B_1(0), \] where $B_1(0)\subset \mathbb {R}^{N}$   $(N\geq 3)$ is a ball of radial $1$ centred at $0$ , $p>0$ and $\alpha \in \mathbb {R}$ . We are concerned with the estimate, existence and nonexistence of positive solutions of the equation, in particular, the equation with Dirichlet boundary condition. For the case $0< p<({N+2})/({N-2})$ , we establish the estimate of positive solutions. When $\alpha \leq -2$ and $p>1$ , we give some conclusions with respect to nonexistence. When $\alpha >-2$ and $1< p<({N+2})/({N-2})$ , we obtain the existence of positive solution for the corresponding Dirichlet problem. When $0< p\leq 1$ and $\alpha \leq -2$ , we show the nonexistence of positive solutions. When $0< p<1$ , $\alpha >-2$ , we give some results with respect to existence and uniqueness of positive solutions.


2013 ◽  
Vol 88 (1) ◽  
pp. 1-11
Author(s):  
HAIYANG HE

AbstractIn this paper, we consider the following Robin problem:$$\begin{eqnarray*}\displaystyle \left\{ \begin{array}{ @{}ll@{}} \displaystyle - \Delta u= \mid x{\mathop{\mid }\nolimits }^{\alpha } {u}^{p} , \quad & \displaystyle x\in \Omega , \\ \displaystyle u\gt 0, \quad & \displaystyle x\in \Omega , \\ \displaystyle \displaystyle \frac{\partial u}{\partial \nu } + \beta u= 0, \quad & \displaystyle x\in \partial \Omega , \end{array} \right.&&\displaystyle\end{eqnarray*}$$where$\Omega $is the unit ball in${ \mathbb{R} }^{N} $centred at the origin, with$N\geq 3$,$p\gt 1$,$\alpha \gt 0$,$\beta \gt 0$, and$\nu $is the unit outward vector normal to$\partial \Omega $. We prove that the above problem has no solution when$\beta $is small enough. We also obtain existence results and we analyse the symmetry breaking of the ground state solutions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


Author(s):  
J. Aguirre ◽  
M. Escobedo

SynopsisWe study the blow-up of positive solutions of the Cauchy problem for the semilinear parabolic equationwhere u is a scalar function of the spatial variable x ∈ ℝN and time t > 0, a ∈ ℝV, a ≠ 0, 1 < p and 1 ≦ q. We show that: (a) if p > 1 and 1 ≦ q ≦ p, there always exist solutions which blow up in finite time; (b) if 1 < q ≦ p ≦ min {1 + 2/N, 1 + 2q/(N + 1)} or if q = 1 and 1 < p ≦ l + 2/N, then all positive solutions blow up in finite time; (c) if q > 1 and p > min {1 + 2/N, 1 + 2q/N + 1)}, then global solutions exist; (d) if q = 1 and p > 1 + 2/N, then global solutions exist.


2012 ◽  
Vol 86 (2) ◽  
pp. 244-253 ◽  
Author(s):  
YANG-WEN ZHANG ◽  
HONG-XU LI

AbstractIn this paper, we consider the Neumann boundary value problem with a parameter λ∈(0,∞): By using fixed point theorems in a cone, we obtain some existence, multiplicity and nonexistence results for positive solutions in terms of different values of λ. We also prove an existence and uniqueness theorem and show the continuous dependence of solutions on the parameter λ.


2008 ◽  
Vol 51 (2) ◽  
pp. 236-248
Author(s):  
Victor N. Konovalov ◽  
Kirill A. Kopotun

AbstractLet Bp be the unit ball in 𝕃p, 0 < p < 1, and let , s ∈ ℕ, be the set of all s-monotone functions on a finite interval I, i.e., consists of all functions x : I ⟼ ℝ such that the divided differences [x; t0, … , ts] of order s are nonnegative for all choices of (s + 1) distinct points t0, … , ts ∈ I. For the classes Bp := ∩ Bp, we obtain exact orders of Kolmogorov, linear and pseudo-dimensional widths in the spaces , 0 < q < p < 1:


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Linfen Cao ◽  
Xiaoshan Wang ◽  
Zhaohui Dai

In this paper, we study a nonlinear system involving the fractional p-Laplacian in a unit ball and establish the radial symmetry and monotonicity of its positive solutions. By using the direct method of moving planes, we prove the following result. For 0<s,t<1,p>0, if u and v satisfy the following nonlinear system -Δpsux=fvx;  -Δptvx=gux,  x∈B10;  ux,vx=0,  x∉B10. and f,g are nonnegative continuous functions satisfying the following: (i) f(r) and g(r) are increasing for r>0; (ii) f′(r)/rp-2, g′(r)/rp-2 are bounded near r=0. Then the positive solutions (u,v) must be radially symmetric and monotone decreasing about the origin.


Sign in / Sign up

Export Citation Format

Share Document