scholarly journals The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions

2020 ◽  
Vol 40 (2) ◽  
pp. 753-766 ◽  
Author(s):  
Kanji Inui ◽  
◽  
Hikaru Okada ◽  
Hiroki Sumi ◽  
2010 ◽  
Vol 149 (1) ◽  
pp. 147-172 ◽  
Author(s):  
ZOLTÁN M. BALOGH ◽  
RETO BERGER ◽  
ROBERTO MONTI ◽  
JEREMY T. TYSON

AbstractWe consider self-similar iterated function systems in the sub-Riemannian setting of Carnot groups. We estimate the Hausdorff dimension of the exceptional set of translation parameters for which the Hausdorff dimension in terms of the Carnot–Carathéodory metric is strictly less than the similarity dimension. This extends a recent result of Falconer and Miao from Euclidean space to Carnot groups.


2019 ◽  
Vol 150 (1) ◽  
pp. 261-275 ◽  
Author(s):  
Sascha Troscheit

AbstractThe class of stochastically self-similar sets contains many famous examples of random sets, for example, Mandelbrot percolation and general fractal percolation. Under the assumption of the uniform open set condition and some mild assumptions on the iterated function systems used, we show that the quasi-Assouad dimension of self-similar random recursive sets is almost surely equal to the almost sure Hausdorff dimension of the set. We further comment on random homogeneous and V -variable sets and the removal of overlap conditions.


2009 ◽  
Vol 30 (6) ◽  
pp. 1665-1684 ◽  
Author(s):  
KEMAL ILGAR EROĞLU ◽  
STEFFEN ROHDE ◽  
BORIS SOLOMYAK

AbstractWe consider linear iterated function systems (IFS) with a constant contraction ratio in the plane for which the ‘overlap set’ 𝒪 is finite, and which are ‘invertible’ on the attractor A, in the sense that there is a continuous surjection q:A→A whose inverse branches are the contractions of the IFS. The overlap set is the critical set in the sense that q is not a local homeomorphism precisely at 𝒪. We suppose also that there is a rational function p with the Julia set J such that (A,q) and (J,p) are conjugate. We prove that if A has bounded turning and p has no parabolic cycles, then the conjugacy is quasisymmetric. This result is applied to some specific examples including an uncountable family. Our main focus is on the family of IFS {λz,λz+1} where λ is a complex parameter in the unit disk, such that its attractor Aλ is a dendrite, which happens whenever 𝒪 is a singleton. C. Bandt observed that a simple modification of such an IFS (without changing the attractor) is invertible and gives rise to a quadratic-like map qλ on Aλ. If the IFS is post-critically finite, then a result of A. Kameyama shows that there is a quadratic map pc (z)=z2 +c, with the Julia set Jc such that (Aλ,qλ) and (Jc,pc) are conjugate. We prove that this conjugacy is quasisymmetric and obtain partial results in the general (not post-critically finite) case.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
J. Neunhäuserer

We prove upper and lower estimates on the Hausdorff dimension of sets of infinite complex continued fractions with finitely many prescribed Gaussian integers. Particulary we will conclude that the dimension of theses sets is not zero or two and there are such sets with dimension greater than one and smaller than one.


Fractals ◽  
2002 ◽  
Vol 10 (01) ◽  
pp. 77-89 ◽  
Author(s):  
F. M. DEKKING ◽  
P. VAN DER WAL

We prove for a subclass of recurrent iterated function systems (also called graph-directed iterated function systems) that the boundary of their attractor is again the attractor of a recurrent IFS. Our method is constructive and permits computation of the Hausdorff dimension of the attractor and its boundary.


Sign in / Sign up

Export Citation Format

Share Document