scholarly journals Emergent behaviors of discrete Lohe aggregation flows

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hyungjun Choi ◽  
Seung-Yeal Ha ◽  
Hansol Park

<p style='text-indent:20px;'>The Lohe sphere model and the Lohe matrix model are prototype continuous aggregation models on the unit sphere and the unitary group, respectively. These models have been extensively investigated in recent literature. In this paper, we propose several discrete counterparts for the continuous Lohe type aggregation models and study their emergent behaviors using the Lyapunov function method. For suitable discretization of the Lohe sphere model, we employ a scheme consisting of two steps. In the first step, we solve the first-order forward Euler scheme, and in the second step, we project the intermediate state onto the unit sphere. For this discrete model, we present a sufficient framework leading to the complete state aggregation in terms of system parameters and initial data. For the discretization of the Lohe matrix model, we use the Lie group integrator method, Lie-Trotter splitting method and Strang splitting method to propose three discrete models. For these models, we also provide several analytical frameworks leading to complete state aggregation and asymptotic state-locking.</p>

2020 ◽  
Vol 20 (4) ◽  
pp. 769-782
Author(s):  
Amiya K. Pani ◽  
Vidar Thomée ◽  
A. S. Vasudeva Murthy

AbstractWe analyze a second-order in space, first-order in time accurate finite difference method for a spatially periodic convection-diffusion problem. This method is a time stepping method based on the first-order Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solution, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {\frac{k}{m}} for the convection part. With h the mesh width in space, this results in an error bound of the form {C_{0}h^{2}+C_{m}k} for appropriately smooth solutions, where {C_{m}\leq C^{\prime}+\frac{C^{\prime\prime}}{m}}. This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 2019, 2, 283–293] based on the second-order Strang splitting.


2019 ◽  
Vol 29 (04) ◽  
pp. 589-632 ◽  
Author(s):  
Jiu-Gang Dong ◽  
Seung-Yeal Ha ◽  
Doheon Kim

We present emergent dynamics of continuous and discrete thermomechanical Cucker–Smale (TCS) models equipped with temperature as an extra observable on general digraph. In previous literature, the emergent behaviors of the TCS models were mainly studied on a complete graph, or symmetric connected graphs. Under this symmetric setting, the total momentum is a conserved quantity. This determines the asymptotic velocity and temperature a priori using the initial data only. Moreover, this conservation law plays a crucial role in the flocking analysis based on the elementary [Formula: see text] energy estimates. In this paper, we consider a more general connection topology which is registered by a general digraph, and the weights between particles are given to be inversely proportional to the metric distance between them. Due to this possible symmetry breaking in communication, the total momentum is not a conserved quantity, and this lack of conservation law makes the asymptotic velocity and temperature depend on the whole history of solutions. To circumvent this lack of conservation laws, we instead employ some tools from matrix theory on the scrambling matrices and some detailed analysis on the state-transition matrices. We present two sufficient frameworks for the emergence of mono-cluster flockings on a digraph for the continuous and discrete models. Our sufficient frameworks are given in terms of system parameters and initial data.


Author(s):  
Jan Bartsch ◽  
Alfio Borzì ◽  
Francesco Fanelli ◽  
Souvik Roy

AbstractThis paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.


2019 ◽  
Vol 19 (2) ◽  
pp. 283-293 ◽  
Author(s):  
Vidar Thomée ◽  
A. S. Vasudeva Murthy

AbstractWe analyze a second-order accurate finite difference method for a spatially periodic convection-diffusion problem. The method is a time stepping method based on the Strang splitting of the spatially semidiscrete solution, in which the diffusion part uses the Crank–Nicolson method and the convection part the explicit forward Euler approximation on a shorter time interval. When the diffusion coefficient is small, the forward Euler method may be used also for the diffusion term.


Sign in / Sign up

Export Citation Format

Share Document