scholarly journals Nonzero-sum differential game of backward doubly stochastic systems with delay and applications

2021 ◽  
Vol 11 (1) ◽  
pp. 73-94
Author(s):  
Qingfeng Zhu ◽  
◽  
Yufeng Shi ◽  
Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Qingfeng Zhu ◽  
Yufeng Shi ◽  
Jiaqiang Wen ◽  
Hui Zhang

This paper is concerned with a type of time-symmetric stochastic system, namely the so-called forward–backward doubly stochastic differential equations (FBDSDEs), in which the forward equations are delayed doubly stochastic differential equations (SDEs) and the backward equations are anticipated backward doubly SDEs. Under some monotonicity assumptions, the existence and uniqueness of measurable solutions to FBDSDEs are obtained. The future development of many processes depends on both their current state and historical state, and these processes can usually be represented by stochastic differential systems with time delay. Therefore, a class of nonzero sum differential game for doubly stochastic systems with time delay is studied in this paper. A necessary condition for the open-loop Nash equilibrium point of the Pontriagin-type maximum principle are established, and a sufficient condition for the Nash equilibrium point is obtained. Furthermore, the above results are applied to the study of nonzero sum differential games for linear quadratic backward doubly stochastic systems with delay. Based on the solution of FBDSDEs, an explicit expression of Nash equilibrium points for such game problems is established.


2021 ◽  
Vol 1 ◽  
pp. 41-54
Author(s):  
Larisa A. Vlasenko ◽  
◽  
Anatoly G. Rutkas ◽  
Arkady A. Chikrii ◽  
◽  
...  

We study a differential game of approach in a delay stochastic system. The evolution of the system is described by Ito`s linear stochastic differential equation in Hilbert space. The considered Hilbert spaces are assumed to be real and separable. The Wiener process takes values in a Hilbert space and has a nuclear symmetric positive covariance operator. The pursuer and evader controls are non-anticipating random processes, taking on values, generally, in different Hilbert spaces. The operator multiplying the system state is the generator of an analytic semigroup. Solutions of the equation are represented with the help of a formula of variation of constants by the initial data and the control block. The delay effect is taken into account by summing shift type operators. To study the differential game, the method of resolving functions is extended to case of delay stochastic systems in Hilbert spaces. The technique of set-valued mappings and their selectors is used. We consider the application of obtained results in abstract Hilbert spaces to systems described by stochastic partial differential equations with time delay. By taking into account a random external influence and time delay, we study the heat propagation process with controlled distributed heat source and leak.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Fu Zhang ◽  
QingXin Meng ◽  
MaoNing Tang

In this paper, we consider a partial information two-person zero-sum stochastic differential game problem, where the system is governed by a backward stochastic differential equation driven by Teugels martingales and an independent Brownian motion. A sufficient condition and a necessary one for the existence of the saddle point for the game are proved. As an application, a linear quadratic stochastic differential game problem is discussed.


2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Liangquan Zhang ◽  
◽  
Qing Zhou ◽  
Juan Yang

2013 ◽  
Vol 43 (12) ◽  
pp. 1237-1257 ◽  
Author(s):  
Xin WANG ◽  
YuFeng SHI ◽  
QingFeng ZHU

Sign in / Sign up

Export Citation Format

Share Document