scholarly journals Neurosurgery and artificial intelligence

2021 ◽  
Vol 8 (4) ◽  
pp. 477-495
Author(s):  
Mohammad Mofatteh ◽  
◽  

<abstract> <p>Neurosurgeons receive extensive and lengthy training to equip themselves with various technical skills, and neurosurgery require a great deal of pre-, intra- and postoperative clinical data collection, decision making, care and recovery. The last decade has seen a significant increase in the importance of artificial intelligence (AI) in neurosurgery. AI can provide a great promise in neurosurgery by complementing neurosurgeons' skills to provide the best possible interventional and noninterventional care for patients by enhancing diagnostic and prognostic outcomes in clinical treatment and help neurosurgeons with decision making during surgical interventions to improve patient outcomes. Furthermore, AI is playing a pivotal role in the production, processing and storage of clinical and experimental data. AI usage in neurosurgery can also reduce the costs associated with surgical care and provide high-quality healthcare to a broader population. Additionally, AI and neurosurgery can build a symbiotic relationship where AI helps to push the boundaries of neurosurgery, and neurosurgery can help AI to develop better and more robust algorithms. This review explores the role of AI in interventional and noninterventional aspects of neurosurgery during pre-, intra- and postoperative care, such as diagnosis, clinical decision making, surgical operation, prognosis, data acquisition, and research within the neurosurgical arena.</p> </abstract>

2011 ◽  
pp. 1017-1029
Author(s):  
William Claster ◽  
Nader Ghotbi ◽  
Subana Shanmuganathan

There is a treasure trove of hidden information in the textual and narrative data of medical records that can be deciphered by text-mining techniques. The information provided by these methods can provide a basis for medical artificial intelligence and help support or improve clinical decision making by medical doctors. In this paper we extend previous work in an effort to extract meaningful information from free text medical records. We discuss a methodology for the analysis of medical records using some statistical analysis and the Kohonen Self-Organizing Map (SOM). The medical data derive from about 700 pediatric patients’ radiology department records where CT (Computed Tomography) scanning was used as part of a diagnostic exploration. The patients underwent CT scanning (single and multiple) throughout a one-year period in 2004 at the Nagasaki University Medical Hospital. Our approach led to a model based on SOM clusters and statistical analysis which may suggest a strategy for limiting CT scan requests. This is important because radiation at levels ordinarily used for CT scanning may pose significant health risks especially to children.


2020 ◽  
pp. 167-186
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


2021 ◽  
Vol 41 ◽  
pp. 03005
Author(s):  
Choirunisa Nur Humairo ◽  
Aquarina Hapsari ◽  
Indra Bramanti

Background: Technology has become a fundamental part of human living. The evolution of technology has been advantageous to science development, including dentistry. One of the latest technology that draw many attention is Artificial Intelligence (AI). Purpose: The aim of this review is to explain the use of AI in many disciplines of dental specialties and its benefit. Reviews: The application of Artificial Intelligence may be beneficial for all dental specialties, varying from pediatric dentist to oral surgeon. In dental clinic management, AI may assist in medical record as well as other paperwork. AI would also give a valuable contribution in important dental procedures, such as diagnosis and clinical decision making. It helps the dentist deliver the best treatment for the patients. Conclusion: The latest development of Artificial Intelligence is beneficial for dental practitioner in the near future. It is considered as a breakthrough of the 21st century to support the diagnostic procedure and decision making in clinical practice. The use of AI can be applied in most of dental specialties.


2020 ◽  
pp. 084653712094143
Author(s):  
Jaryd R. Christie ◽  
Pencilla Lang ◽  
Lauren M. Zelko ◽  
David A. Palma ◽  
Mohamed Abdelrazek ◽  
...  

Lung cancer remains the most common cause of cancer death worldwide. Recent advances in lung cancer screening, radiotherapy, surgical techniques, and systemic therapy have led to increasing complexity in diagnosis, treatment decision-making, and assessment of recurrence. Artificial intelligence (AI)–based prediction models are being developed to address these issues and may have a future role in screening, diagnosis, treatment selection, and decision-making around salvage therapy. Imaging plays an essential role in all components of lung cancer management and has the potential to play a key role in AI applications. Artificial intelligence has demonstrated value in prognostic biomarker discovery in lung cancer diagnosis, treatment, and response assessment, putting it at the forefront of the next phase of personalized medicine. However, although exploratory studies demonstrate potential utility, there is a need for rigorous validation and standardization before AI can be utilized in clinical decision-making. In this review, we will provide a summary of the current literature implementing AI for outcome prediction in lung cancer. We will describe the anticipated impact of AI on the management of patients with lung cancer and discuss the challenges of clinical implementation of these techniques.


Author(s):  
Rawan AlSaad ◽  
Qutaibah Malluhi ◽  
Ibrahim Janahi ◽  
Sabri Boughorbel

Abstract Background Predictive modeling with longitudinal electronic health record (EHR) data offers great promise for accelerating personalized medicine and better informs clinical decision-making. Recently, deep learning models have achieved state-of-the-art performance for many healthcare prediction tasks. However, deep models lack interpretability, which is integral to successful decision-making and can lead to better patient care. In this paper, we build upon the contextual decomposition (CD) method, an algorithm for producing importance scores from long short-term memory networks (LSTMs). We extend the method to bidirectional LSTMs (BiLSTMs) and use it in the context of predicting future clinical outcomes using patients’ EHR historical visits. Methods We use a real EHR dataset comprising 11071 patients, to evaluate and compare CD interpretations from LSTM and BiLSTM models. First, we train LSTM and BiLSTM models for the task of predicting which pre-school children with respiratory system-related complications will have asthma at school-age. After that, we conduct quantitative and qualitative analysis to evaluate the CD interpretations produced by the contextual decomposition of the trained models. In addition, we develop an interactive visualization to demonstrate the utility of CD scores in explaining predicted outcomes. Results Our experimental evaluation demonstrate that whenever a clear visit-level pattern exists, the models learn that pattern and the contextual decomposition can appropriately attribute the prediction to the correct pattern. In addition, the results confirm that the CD scores agree to a large extent with the importance scores generated using logistic regression coefficients. Our main insight was that rather than interpreting the attribution of individual visits to the predicted outcome, we could instead attribute a model’s prediction to a group of visits. Conclusion We presented a quantitative and qualitative evidence that CD interpretations can explain patient-specific predictions using CD attributions of individual visits or a group of visits.


Sign in / Sign up

Export Citation Format

Share Document