scholarly journals A Case of Muscular Dystrophy who developed Deformation of the Vertebrae due to Excessive Cuff Pressure of the Tracheostomy Tube and Defective Tracheal Cannula Fixation

2019 ◽  
Vol 122 (9) ◽  
pp. 1229-1234
Author(s):  
Yuka Kitani ◽  
Hiromitsu Hatakeyama ◽  
Masanori Komatsu ◽  
Naoko Sakuma ◽  
Kunihiko Shibata ◽  
...  
2013 ◽  
Vol 123 (8) ◽  
pp. 1884-1888 ◽  
Author(s):  
Nancy Jiang ◽  
Anthony G. Del Signore ◽  
Alfred M. Iloreta ◽  
Benjamin D. Malkin

2007 ◽  
Vol 121 (09) ◽  
Author(s):  
C Faris ◽  
E Koury ◽  
J Philpott ◽  
S Sharma ◽  
N Tolley ◽  
...  

2015 ◽  
Vol 30 (5) ◽  
pp. 36-38 ◽  
Author(s):  
Nicola Credland

2020 ◽  
Vol 44 (5) ◽  
pp. 402-408
Author(s):  
Dong Min Kim ◽  
Myung Jun Shin ◽  
Sung Dong Kim ◽  
Yong Beom Shin ◽  
Ho Eun Park ◽  
...  

Objective To determine the patterns of tracheostomy cuff pressure changes with various air inflation amounts in different types of tracheostomy tubes to obtain basic data for appropriately managing longterm tracheostomy.Methods We performed tracheostomy on a 46-year-old male cadaver. Three types of tracheostomy tubes (single-cuffed, double-cuffed, and adjustable flange), divided into 8 different subtypes based on internal tube diameters and cuff diameters, were inserted into the cadaver. Air was inflated into the cuff, and starting with 1 mL air, the cuff pressure was subsequently measured using a manometer.Results For the 7.5 mm/14 mm tracheostomy tube, cuff inflation with 3 mL of air yielded a cuff pressure within the recommended range of 20–30 cmH<sub>2</sub>O. The 7.5 mm/24 mm tracheostomy tube showed adequate cuff pressure at 5 mL of air inflation. Similar values were observed for the 8.0 mm/16 mm and 8.0 mm/27 mm tubes. Double-cuffed tracheostomy cuff pressures (7.5 mm/20 mm and 8.0 mm/20 mm tubes) at 3 mL air inflation had cuff pressures of 18–20 cmH<sub>2</sub>O at both the proximal and distal sites. For the adjustable flange tracheostomy tube, cuff pressure at 6 mL of cuff air inflation was within the recommended range. Maximal cuff pressure was achieved at inflation with almost 14 mL of air, unlike other tube types.Conclusion Various types of tracheostomy tubes showed different cuff pressures after inflation. These values might aid in developing guidelines For patients who undergo tracheostomy and are discharged home without cuff pressure manometers, this standard might be helpful to develop guidelines.


2005 ◽  
Vol 119 (6) ◽  
pp. 461-464 ◽  
Author(s):  
Pushkas Gopalan ◽  
Simon T Browning

The tracheal mucosa is very a delicate structure, and pressure–ischaemia problems following the use of cuffed tracheostomy tubes are well documented. Iatrogenic tracheal stenosis is one of the consequences of mucosal ischaemia and is very difficult to treat. In this study the accuracy of finger-tip tested tracheostomy tube cuff inflation pressure, as judged by consultants and non-consultants, was assessed by comparison with manometric pressure readings. The estimated pressure readings from the consultant group were more accurate than those from the non-consultant group, but a high standard deviation and very big difference between low and high readings in both these groups showed the real extent of the problem. Participants who performed 10 or more tracheostomies a year obtained more accurate results. No definite correlation was observed between the readings and the experience of the participants in otolaryngology or the size of the tube used. The authors recommend that instrumental monitoring of cuff pressure be considered good practice among junior otolaryngologists.


Author(s):  
S. E. Miller ◽  
G. B. Hartwig ◽  
R. A. Nielsen ◽  
A. P. Frost ◽  
A. D. Roses

Many genetic diseases can be demonstrated in skin cells cultured in vitro from patients with inborn errors of metabolism. Since myotonic muscular dystrophy (MMD) affects many organs other than muscle, it seems likely that this defect also might be expressed in fibroblasts. Detection of an alteration in cultured skin fibroblasts from patients would provide a valuable tool in the study of the disease as it would present a readily accessible and controllable system for examination. Furthermore, fibroblast expression would allow diagnosis of fetal and presumptomatic cases. An unusual staining pattern of MMD cultured skin fibroblasts as seen by light microscopy, namely, an increase in alcianophilia and metachromasia, has been reported; both these techniques suggest an altered glycosaminoglycan metabolism An altered growth pattern has also been described. One reference on cultured skin fibroblasts from a different dystrophy (Duchenne Muscular Dystrophy) reports increased cytoplasmic inclusions seen by electron microscopy. Also, ultrastructural alterations have been reported in muscle and thalamus biopsies from MMD patients, but no electron microscopical data is available on MMD cultured skin fibroblasts.


Author(s):  
H. D. Geissinge ◽  
L.D. Rhodes

A recently discovered mouse model (‘mdx’) for muscular dystrophy in man may be of considerable interest, since the disease in ‘mdx’ mice is inherited by the same mode of inheritance (X-linked) as the human Duchenne (DMD) muscular dystrophy. Unlike DMD, which results in a situation in which the continual muscle destruction cannot keep up with abortive regenerative attempts of the musculature, and the sufferers of the disease die early, the disease in ‘mdx’ mice appears to be transient, and the mice do not die as a result of it. In fact, it has been reported that the severely damaged Tibialis anterior (TA) muscles of ‘mdx’ mice seem to display exceptionally good regenerative powers at 4-6 weeks, so much so, that these muscles are able to regenerate spontaneously up to their previous levels of physiological activity.


JAMA ◽  
1966 ◽  
Vol 197 (11) ◽  
pp. 843-848 ◽  
Author(s):  
P. J. Vignos
Keyword(s):  

2008 ◽  
Vol 18 (2) ◽  
pp. 76-86 ◽  
Author(s):  
Lauren Hofmann ◽  
Joseph Bolton ◽  
Susan Ferry

Abstract At The Children's Hospital of Philadelphia (CHOP) we treat many children requiring tracheostomy tube placement. With potential for a tracheostomy tube to be in place for an extended period of time, these children may be at risk for long-term disruption to normal speech development. As such, speaking valves that restore more normal phonation are often key tools in the effort to restore speech and promote more typical language development in this population. However, successful use of speaking valves is frequently more challenging with infant and pediatric patients than with adult patients. The purpose of this article is to review background information related to speaking valves, the indications for one-way valve use, criteria for candidacy, and the benefits of using speaking valves in the pediatric population. This review will emphasize the importance of interdisciplinary collaboration from the perspectives of speech-language pathology and respiratory therapy. Along with the background information, we will present current practices and a case study to illustrate a safe and systematic approach to speaking valve implementation based upon our experiences.


Sign in / Sign up

Export Citation Format

Share Document