scholarly journals Inkjet printing : bubble entrainment and satellite formation

Author(s):  
Arjan Fraters
Author(s):  
Alfonso Arturo Castrejon-Pita ◽  
Eleanor S Betton ◽  
Nick Campbell ◽  
Nick Jackson ◽  
Jonathan Morgan ◽  
...  
Keyword(s):  

2019 ◽  
Vol 2019 (1) ◽  
pp. 56-59
Author(s):  
Erik Beckert ◽  
Falk Kemper ◽  
Sabrina-Jasmin Wolleb ◽  
Maximilian Reif ◽  
Soenke Steenhusen
Keyword(s):  

2018 ◽  
Vol 2018 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Min Zhao ◽  
Susana Diaz Amaya ◽  
Seon-ah Jin ◽  
Li-Kai Lin ◽  
Amanda J. Deering ◽  
...  

2017 ◽  
Vol 61 (5) ◽  
pp. 505051-505057 ◽  
Author(s):  
Zundong Liu ◽  
Kuanjun Fang ◽  
Hongguo Gao ◽  
Xiuming Liu ◽  
Jianfei Zhang ◽  
...  

2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2019 ◽  
Author(s):  
Mykhailo Sytnyk ◽  
Ole Lytken ◽  
Tim Freund ◽  
Wolfgang Heiss ◽  
Christina Harreiss ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
pp. 43-52
Author(s):  
Alireza Alikhani ◽  
Safa Dehghan M ◽  
Iman Shafieenejad

In this study, satellite formation flying guidance in the presence of under actuation using inter-vehicle Coulomb force is investigated. The Coulomb forces are used to stabilize the formation flying mission. For this purpose, the charge of satellites is determined to create appropriate attraction and repulsion and also, to maintain the distance between satellites. Static Coulomb formation of satellites equations including three satellites in triangular form was developed. Furthermore, the charge value of the Coulomb propulsion system required for such formation was obtained. Considering Under actuation of one of the formation satellites, the fault-tolerance approach is proposed for achieving mission goals. Following this approach, in the first step fault-tolerant guidance law is designed. Accordingly, the obtained results show stationary formation. In the next step, tomaintain the formation shape and dimension, a fault-tolerant control law is designed.


Sign in / Sign up

Export Citation Format

Share Document