nanoparticle ink
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 54)

H-INDEX

28
(FIVE YEARS 3)

Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Nerio Andrés Montoya ◽  
Valeria Criscuolo ◽  
Andrea Lo Presti ◽  
Raffaele Vecchione ◽  
Christian Falconi

Four-wire measurements have been introduced by Lord Kelvin in 1861 and have since become the standard technique for characterizing small resistances and impedances. However, high-density 4-wire measurements are generally complex, time-consuming, and inefficient because of constraints on interconnects, pads, external wires, and mechanical contacts, thus reducing reproducibility, statistical significance, and throughput. Here, we introduce, systematically design, analyze, and experimentally validate zero interconnect networks interfaced to external instrumentation by couples of twin wire. 3D-printed holders with magnets, interconnects, nonadhesive layers, and spacers can effortlessly establish excellent electrical connections with tunable or minimum contact forces and enable accurate measurements even for delicate devices, such as thin metals on soft polymers. As an example, we measured all the resistances of a twin-wire 29-resistor network made of silver-nanoparticle ink printed on polyimide, paper, or photo paper, including during sintering or temperature calibration, resulting in an unprecedentedly easy and accurate characterization of both resistivity and its temperature coefficient. The theoretical framework and experimental strategies reported here represent a breakthrough toward zero interconnect, simple, and efficient high-density 4-wire characterizations, can be generalized to other 4-wire measurements (impedances, sensors) and can open the way to more statistically meaningful and reproducible analyses of materials, high-throughput measurements, and minimally invasive characterizations of biomaterials.


Author(s):  
Daiki Saito ◽  
Kazuhiko Sasagawa ◽  
Takeshi Moriwaki ◽  
Kazuhiro Fujisaki

Abstract Printed electronics (PEs) have attracted attention for the fabrication of microscale electronic circuits. PEs use conductive inks which include metal nanoparticles. The conductive ink can be printed on flexible substrates for wearable devices using ink-jet printers and roll-to-roll methods. With the scaling down of electric devices, the current density and Joule heating in the device lines increase, and electromigration (EM) damage becomes significant. EM is a transportation phenomenon of metallic atoms caused by the electron wind under high-density current. Reducing the EM damage is extremely important to enhance the device reliability. With the progress in miniaturization of the metal nanoparticle ink lines, EM problem needs to be solved for ensuring the reliability of these lines. We know that the formation of aggregates and cathode damages occur due to a current loading. The diffusion path of atoms due to the EM has not been identified under the high-density current loading. In this study, a high-density electric current loading was applied to an Ag nanoparticle line. The line specimens were prepared using a lift-off method. After the current loading tests, observations were conducted using a laser microscope and scanning electron microscope. A local decrease in the line thickness and scale-shaped slit-like voids were observed due to the high-density current loading. Moreover, the microstructure of the line was modified by enlarging the Ag grain. From the results, we identified that a dominant diffusion occurred at the Ag grain boundary due to the EM.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-28
Author(s):  
Hugo Gaspar ◽  
Gabriel Bernardo ◽  
Adélio Mendes

Over the last four years, tremendous progress has occurred in the field of organic photovoltaics (OPVs) and the champion power conversion efficiency (PCE) under AM1.5G conditions, as certified by the National Renewable Energy Laboratory (NREL), is currently 18.2%. However, these champion state-of-the-art devices were fabricated at lab-scale using highly toxic halogenated solvents which are harmful to human health and to the environment. The transition of OPVs from the lab to large-scale production and commercialization requires the transition from halogenated-solvent-processing to green-solvent-processing without compromising the device’s performance. This review focuses on the most recent research efforts, performed since the year 2018 onwards, in the development of green-solvent-processable OPVs and discusses the three main strategies that are being pursued to achieve the proposed goal, namely, (i) molecular engineering of novel donors and acceptors, (ii) solvent selection, and (iii) nanoparticle ink technology.


Solar RRL ◽  
2021 ◽  
Author(s):  
Kai Cheong Tam ◽  
Hirotoshi Saito ◽  
Philipp Maisch ◽  
Karen Forberich ◽  
Sarmad Feroze ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7960
Author(s):  
Ammar Al-Adhami ◽  
Ergun Ercelebi

This paper presents a microstrip antenna based on metamaterials (MTM). The proposed antenna showed several resonances around the BAN and ISM frequency bands. The antenna showed a suitable gain for short and medium wireless communication systems of about 1 dBi, 1.24 dBi, 1.48 dBi, 2.05 dBi, and 4.11 dBi at 403 MHz, 433 MH, 611 Mz, 912 MHz, and 2.45 GHz, respectively. The antenna was printed using silver nanoparticle ink on a polymer substrate. The antenna size was reduced to 20 × 10 mm2 to suit the different miniaturized wireless biomedical devices. The fabricated prototype was tested experimentally on the human body. The main novelty with this design is its ability to suppress the surface wave from the patch edges, significantly reducing the back radiation toward the human body when used close to it. The antenna was located on the human head to specify the specific absorption rate (SAR). It was found in all cases that the proposed antenna showed low SAR effects on the human body.


2021 ◽  
Vol 8 (10) ◽  
pp. 106401
Author(s):  
Wei Wang ◽  
Hang Bai ◽  
Guowei Zhi ◽  
Yijie Zhao ◽  
Wenyan Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document