electrostatic attraction
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 64)

H-INDEX

34
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Yuying Hu ◽  
Susu Liu ◽  
Min Qiu ◽  
Xiaohuan Zheng ◽  
Xiaoming Peng ◽  
...  

Abstract Ly @ FeZn layered double hydroxides (LDHs) controllable fabrication based on Box-Behnken Design (BBD) model was fabricated, and presented stable and efficient removal performance for Ciprofloxacin (CIP), Norfloxacin (NOR) and Ofloxacin (OFL) removal. It should be noted that Ly @ FeZn had different adsorption behavior towards CIP, NOR and OFL. Furthermore, the Ly @ FeZn was characterized by SEM, XRD, FT-IR and XPS. Results revealed the optimized fabrication condition (temperature of 60 °C, Fe / Zn molar ratio of 0.5 and the lysine dosage of 5.8 mmol) for the removing efficient. The highest adsorption capacity of CIP, NOR and OFL were 193.83, 190.20 and 62.12 mg/g, respectively. Adsorption kinetics of both CIP and NOR were well simulated with the pseudo-first-order kinetic model, while that of OFL was well-described by the pseudo-second-order. Moreover, the adsorption thermodynamics of CIP and NOR on Ly @ FeZn indicated that the adsorption processes were exothermal, feasible and spontaneous. It was worth noting that the adsorption mechanism of Ly @ FeZn for CIP and NOR were the synergistic reaction of electrostatic attraction, chemical bonding and flocculation. On the other side, the adsorption behavior of OFL was relatively low, and the adsorption mechanism was only electrostatic attraction.


2021 ◽  
Author(s):  
Nazek El-Atab ◽  
Rishabh Bhooshan Mishra ◽  
Muhammad M. Hussain

Abstract Wearing a face mask has become a necessity following the outbreak of the coronavirus (COVID-19) disease, where its effectiveness in containing the pandemic has been confirmed. Nevertheless, the pandemic has revealed major deficiencies in the ability to manufacture and ramp up worldwide production of efficient surgical-grade face masks. As a result, many researchers have focused their efforts on the development of low cost, smart and effective face covers. In this article, following a short introduction concerning face mask requirements, the different nanotechnology-enabled techniques for achieving better protection against the SARS-CoV-2 virus are reviewed, including the development of nanoporous and nanofibrous membranes in addition to triboelectric nanogenerators based masks, which can filter the virus using various mechanisms such as straining, electrostatic attraction and electrocution. The development of nanomaterials-based mask coatings to achieve virus repellent and sterilizing capabilities, including antiviral, hydrophobic and photothermal features are also discussed. Finally, the usability of nanotechnology-enabled face masks is discussed and compared with that of current commercial-grade N95 masks. To conclude, we highlight the challenges associated with the quick transfer of nanomaterials-enabled face masks and provide an overall outlook of the importance of nanotechnology in counteracting the COVID-19 and future pandemics.


2021 ◽  
Vol 13 (17) ◽  
pp. 9932
Author(s):  
Tariqul Islam ◽  
Yanliang Li ◽  
Hefa Cheng

Biochars (BCs) are considered as ecofriendly and multifunctional materials with significant potential for remediation of contaminated water and soils, while engineered biochars (E-BCs) with enlarged surface areas and abundant surface functional groups can perform even better in environmental remediation. This review systematically summarizes the key physical and chemical properties of BCs that affect their pollutant sorption capacities, major methods employed for modification of E-BCs, the performance of BCs/E-BCs in removing major types of organic (e.g., antibiotics and pesticides) and inorganic pollutants (e.g., heavy metals), and the corresponding removal mechanisms. The physical and chemical properties of BCs—such as ash or mineral contents, aromaticity, surface structures, pH, and surface functional groups (e.g., C=O, -COOH, -OH, and -NH2)—depend primarily on their feedstock sources (i.e., plant, sludge, or fecal) and the pyrolysis temperature. Ion exchange, precipitation, electrostatic attraction, and complexation are the main mechanisms involved in the adsorption of inorganic pollutants on BCs/E-BCs, whereas hydrogen bonding, pore filling, electrostatic attraction, hydrophobic interaction, and van der Waals forces are the major driving forces for the uptake of organic pollutants. Despite their significant promises, more pilot and field scale investigations are necessary to demonstrate the practical applicability and viability of BCs/E-BCs in water and soil remediation.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting Wang ◽  
Wei-Wei Kong ◽  
Wan-Cheng Yu ◽  
Jie-Feng Gao ◽  
Kun Dai ◽  
...  

Highlights The cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time. The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties. Efficient healing property was realized under heating environment. Abstract It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels–Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.


Chemosphere ◽  
2021 ◽  
pp. 131121
Author(s):  
Cong Li ◽  
Jian Liu ◽  
Dujia Wang ◽  
Long Kong ◽  
Yanxin Wu ◽  
...  

2021 ◽  
pp. 150057
Author(s):  
Dongbo Xu ◽  
Qijia Ding ◽  
Yiyang Zheng ◽  
Qincong Li ◽  
Fuming Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document