scholarly journals Bayesian Model Selection in Fisheries Management and Ecology

2019 ◽  
Vol 10 (2) ◽  
pp. 691-707
Author(s):  
Jason C. Doll ◽  
Stephen J. Jacquemin

Abstract Researchers often test ecological hypotheses relating to a myriad of questions ranging from assemblage structure, population dynamics, demography, abundance, growth rate, and more using mathematical models that explain trends in data. To aid in the evaluation process when faced with competing hypotheses, we employ statistical methods to evaluate the validity of these multiple hypotheses with the goal of deriving the most robust conclusions possible. In fisheries management and ecology, frequentist methodologies have largely dominated this approach. However, in recent years, researchers have increasingly used Bayesian inference methods to estimate model parameters. Our aim with this perspective is to provide the practicing fisheries ecologist with an accessible introduction to Bayesian model selection. Here we discuss Bayesian inference methods for model selection in the context of fisheries management and ecology with empirical examples to guide researchers in the use of these methods. In this perspective we discuss three methods for selecting among competing models. For comparing two models we discuss Bayes factor and for more complex models we discuss Watanabe–Akaike information criterion and leave-one-out cross-validation. We also describe what kinds of information to report when conducting Bayesian inference. We conclude this review with a discussion of final thoughts about these model selection techniques.

Author(s):  
Therese M. Donovan ◽  
Ruth M. Mickey

This chapter provides a very brief introduction to Bayesian model selection. The “Survivor Problem” is expanded in this chapter, where the focus is now on comparing two models that predict how long a contestant will last in a game of Survivor: one model uses years of formal education as a predictor, and a second model uses grit as a predictor. Gibbs sampling is used for parameter estimation. Deviance Information Criterion (commonly abbreviated as DIC) is used as a guide for model selection. Details of how this measure is computed are described. The chapter also discusses model assessment (model fit) and Occam’s razor.


2005 ◽  
Vol 08 (01) ◽  
pp. 97-121 ◽  
Author(s):  
MICHAEL A. KOURITZIN ◽  
YONG ZENG

This paper develops the Bayesian model selection based on Bayes factor for a rich class of partially-observed micro-movement models of asset price. We focus on one recursive algorithm to calculate the Bayes factors, first deriving the system of SDEs for them and then applying the Markov chain approximation method to yield a recursive algorithm. We prove the consistency (or robustness) of the recursive algorithm. To illustrate the construction of such a recursive algorithm, we consider a model selection problem for two micro-movement models with and without stochastic volatility, and provide simulation and real-data examples to demonstrate the effectiveness of the Bayes factor in the model selection for this class of models.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
J. Alberto Vázquez ◽  
David Tamayo ◽  
Anjan A. Sen ◽  
Israel Quiros

PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0182455 ◽  
Author(s):  
Nicole White ◽  
Miles Benton ◽  
Daniel Kennedy ◽  
Andrew Fox ◽  
Lyn Griffiths ◽  
...  

Biometrika ◽  
2009 ◽  
Vol 96 (3) ◽  
pp. 497-512 ◽  
Author(s):  
C. M. Carvalho ◽  
J. G. Scott

Sign in / Sign up

Export Citation Format

Share Document