scholarly journals The Importance of Assessing Climate Change Vulnerability to Address Species Conservation

2014 ◽  
Vol 5 (2) ◽  
pp. 450-462 ◽  
Author(s):  
Karen E. Bagne ◽  
Megan M. Friggens ◽  
Sharon J. Coe ◽  
Deborah M. Finch

Abstract Species conservation often prioritizes attention on a small subset of “special status” species at high risk of extinction, but actions based on current lists of special status species may not effectively moderate biodiversity loss if climate change alters threats. Assessments of climate change vulnerability may provide a method to enhance identification of species at risk of extinction. We compared climate change vulnerability and lists of special status species to examine the adequacy of current lists to represent species at risk of extinction in the coming decades. The comparison was made for terrestrial vertebrates in a regionally important management area of the southwestern United States. Many species not listed as special status were vulnerable to increased extinction risk with climate change. Overall, 74% of vulnerable species were not included in lists of special status and omissions were greatest for birds and reptiles. Most special status species were identified as additionally vulnerable to climate change impacts and there was little evidence to indicate the outlook for these species might improve with climate change, which suggests that existing conservation efforts will need to be intensified. Current special status lists encompassed climate change vulnerability best if climate change was expected to exacerbate current threats, such as the loss of wetlands, but often overlooked climate-driven threats, such as exceeding physiological thresholds.

2018 ◽  
Vol 66 (7) ◽  
pp. 541 ◽  
Author(s):  
J. L. Silcock ◽  
R. J. Fensham

Threatened species lists are used at global, national and regional scales to identify species at risk of extinction. Many species are listed due to restricted population size or geographic distribution, and decline is often inferred rather than quantified. Vascular plants comprise over 70% of nationally listed threatened species, but there is an incomplete picture of which species are most at risk of extinction, where these occur and the factors behind their declines. We compiled published information and the best available field knowledge including 125 expert interviews to identify declining and at risk species. The candidate list comprised 1135 taxa, which were mostly listed as Critically Endangered or Endangered under Federal and/or State legislation, but included 80 that are currently unlisted but considered to be highly threatened. In total, 418 taxa were assessed as having a documented, suspected or projected continuing decline. These were ranked based on extinction risk and magnitude of continuing decline, which suggest that 296 are at risk of extinction under current management regimes, including 55 at high risk of extinction. Declining and imperilled taxa are concentrated in a relatively small number of regions and habitats, and six threatening processes are driving the majority of declines. Field surveys and robust, repeatable monitoring are required to better inform population trends and extinction risk, as well as inform the status of almost 200 taxa that are potentially imperilled but poorly known. Identification of declining taxa can identify key issues for flora conservation across a continent, and allow for targeted and efficient recovery efforts.


Science ◽  
2020 ◽  
Vol 367 (6478) ◽  
pp. 685-688 ◽  
Author(s):  
Peter Soroye ◽  
Tim Newbold ◽  
Jeremy Kerr

Climate change could increase species’ extinction risk as temperatures and precipitation begin to exceed species’ historically observed tolerances. Using long-term data for 66 bumble bee species across North America and Europe, we tested whether this mechanism altered likelihoods of bumble bee species’ extinction or colonization. Increasing frequency of hotter temperatures predicts species’ local extinction risk, chances of colonizing a new area, and changing species richness. Effects are independent of changing land uses. The method developed in this study permits spatially explicit predictions of climate change–related population extinction-colonization dynamics within species that explains observed patterns of geographical range loss and expansion across continents. Increasing frequencies of temperatures that exceed historically observed tolerances help explain widespread bumble bee species decline. This mechanism may also contribute to biodiversity loss more generally.


Sign in / Sign up

Export Citation Format

Share Document