terrestrial vertebrates
Recently Published Documents


TOTAL DOCUMENTS

667
(FIVE YEARS 214)

H-INDEX

54
(FIVE YEARS 8)

Author(s):  
Ankur Jyoti Kashyap ◽  
Debasish Bhattacharjee ◽  
Hemanta Kumar Sarmah

The fear response is an important anti-predator adaptation that can significantly reduce prey's reproduction by inducing many physiological and psychological changes in the prey. Recent studies in behavioral sciences reveal this fact. Other than terrestrial vertebrates, aquatic vertebrates also exhibit fear responses. Many mathematical studies have been done on the mass mortality of pelican birds in the Salton Sea in Southern California and New Mexico in recent years. Still, no one has investigated the scenario incorporating the fear effect. This work investigates how the mass mortality of pelican birds (predator) gets influenced by the fear response in tilapia fish (prey). For novelty, we investigate a modified fractional-order eco-epidemiological model by incorporating fear response in the prey population in the Caputo-fractional derivative sense. The fundamental mathematical requisites like existence, uniqueness, non-negativity and boundedness of the system's solutions are analyzed. Local and global asymptotic stability of the system at all the possible steady states are investigated. Routh-Hurwitz criterion is used to analyze the local stability of the endemic equilibrium. Fractional Lyapunov functions are constructed to determine the global asymptotic stability of the disease-free and endemic equilibrium. Finally, numerical simulations are conducted with the help of some biologically plausible parameter values to compare the theoretical findings. The order $\alpha$ of the fractional derivative is determined using Matignon's theorem, above which the system loses its stability via a Hopf bifurcation. It is observed that an increase in the fear coefficient above a threshold value destabilizes the system. The mortality rate of the infected prey population has a stabilization effect on the system dynamics that helps in the coexistence of all the populations. Moreover, it can be concluded that the fractional-order may help to control the coexistence of all the populations.


2021 ◽  
Vol 3 ◽  
pp. ec03043
Author(s):  
Fernando de C. Jacinavicius ◽  
Rafaela L. Arbex ◽  
Darci Barros-Battesti ◽  
Ricardo Bassini-Silva

Chigger mites are ectoparasites of terrestrial vertebrates and can even bite humans, causing lesions on their skins. The co-parasitism is gradually being reported for this family, and recent studies have highlighted this relationship worldwide. In Brazil, only some records of chigger species co-parasitizing rodents and lizards in the Pernambuco and Piauí States were done. The present study reports six co-parasitism situations in cricetid rodents collected in the Morro Grande Forest Reserve, Cotia Municipality, São Paulo State, Brazil.


Author(s):  
Michael Baker

There is much concern about disruption of endocrine physiology regulated by steroid hormones in humans, other terrestrial vertebrates and fish by industrial chemicals, such as bisphenol A, and pesticides, such as DDT. These endocrine-disrupting chemicals influence steroid-mediated physiology in humans and other vertebrates by competing with steroids for receptor binding sites, disrupting diverse responses involved in reproduction, development and differentiation. Here I discuss that due to evolution of the progesterone receptor (PR) and mineralocorticoid receptor (MR) after ray-finned fish and terrestrial vertebrates diverged from a common ancestor, each receptor evolved to respond to different steroids in ray-finned fish and terrestrial vertebrates. In elephant shark, a cartilaginous fish, ancestral to ray-finned fish and terrestrial vertebrates, both progesterone and 17,20-beta-dihydroxy-progesterone activate the PR. During the evolution of ray-finned fish and terrestrial vertebrates, the PR in terrestrial vertebrates continued responding to progesterone and evolved to weakly respond to 17,20-beta-dihydroxy-progesterone. In contrast, the physiological progestin for the PR in zebrafish and other ray-finned fish is 17,20-beta-dihydroxy-progesterone, and ray-finned fish PR responds weakly to progesterone. The MR in fish and terrestrial vertebrates also diverged to have different responses to progesterone. Progesterone is a potent agonist for elephant shark MR, zebrafish MR and other fish MRs, in contrast to progesterone’s opposite activity as an antagonist for aldosterone, the physiological mineralocorticoid for human MR. These different physiological ligands for fish and terrestrial vertebrate PR and MR need to be considered in applying data for their disruption by chemicals in fish and terrestrial vertebrates to each other.


Author(s):  
Adem Keskin ◽  
Ahmet Yesari Selçuk

Ticks (Acari: Ixodidae) are one of the most important ectoparasites of many kinds of terrestrial vertebrates. Between September 2019 and June 2021, we captured a total of 99 wild mammals belonging to 22 species, 14 genera, nine families, and four orders in order to investigate the presence of tick infestations from 14 different locations of 10 provinces in Turkey. Overall, 351 ticks (181 larvae, 156 nymphs, 6 females, and 8 males) were collected from 46 out of 99 wild mammalian species. Ticks were identified as Haemaphysalis erinacei Pavesi (5 males), Haemaphysalis parva Neumann (3 nymphs), Hyalomma marginatum gr. (16 nymphs), Ixodes kaiseri Arthur (1 nymph), Ixodes redikorzevi Olenev (167 larvae, 128 nymphs, and 2 females), Ixodes ricinus (L.) (12 larvae, 1 nymph, and 1 male), Ixodes trianguliceps Birula (2 larvae, and 4 nymphs), and Rhipicephalus turanicus Pomerantzev (3 nymphs, 4 females, and 2 males). Of which, I. trianguliceps was reported in Turkey for the first time. Furthermore, we reported many new tick-host associations for Turkey.


2021 ◽  
Vol 9 ◽  
Author(s):  
Richard K. Zimmer ◽  
Graham A. Ferrier ◽  
Cheryl Ann Zimmer

Thousands of armed predatory species, distributed widely across the metazoan tree-of-life, consume only hard-shell or exoskeleton-bearing organisms (called “durophagy”). Prey armor clearly has evolved in response to selection by predators, but there is little evidence of the contrary, counter-adaptation by predators. Evolved consumer responses to prey, in general, might be more readily expressed in ways other than morphological traits, including via sensory cues. Here, we explored the chemosensory basis for durophagy in a model predator-prey system, and identified intimate associations between durophagous predators and their shelled prey. Barnacles (Balanus glandula and Semibalanus cariosus) bear hard shells and secrete, respectively, a 199 or 201 kDa glycoprotein ortholog (named “MULTIFUNCin”), with expression limited to the body armor (epidermis, cuticle, and live shell). To test for effects of MULTIFUNCin on predators, we constructed faux prey to mimic meaningful physical and chemical characteristics of live barnacles. In separate experiments, each consumer species was presented MULTIFUNCin, purified from either B. glandula or S. cariosus, at a typical armor concentration. All six predatory species (sea star, Pisaster ochraceus; whelks, Acanthinucella spirata, Nucella emarginata, N. ostrina, N. canaliculata, and N. lamellosa) attacked and ate MULTIFUNCin-infused faux prey significantly more than controls. Akin to barnacles, secretion of glycoprotein-rich extracellular matrices is common among armored prey species—from marine sponges to terrestrial vertebrates. Our results, therefore, suggest that chemosensory exploitation of glycoproteins could be widespread, with notable consequences for life on land and in the sea.


Author(s):  
James L Occi ◽  
Victoria M Campbell ◽  
Dina M Fonseca ◽  
Richard G Robbins

Abstract Ixodes scapularis Say is a three-host tick that has been recorded feeding on over 150 different species of terrestrial vertebrates (mammals, birds, and reptiles). This tick is found throughout the northeastern, coastal southeastern, and upper midwestern United States and is considered the most significant vector of tick-borne pathogens to humans in North America. Despite its ubiquity and broad host range, I. scapularis previously has not been reported feeding on bats (Chiroptera). However, during 2019 and 2020, larvae and nymphs of I. scapularis were recovered from big brown bats, Eptesicus fuscus (Palisot de Beauvois), at four locations in rural New York State, USA. All Ixodes infested bats were injured and found on the ground; therefore, parasitism by I. scapularis was likely opportunistic. Nonetheless, the large number of pathogens known to be associated with bats and the frequency with which I. scapularis bites people suggest that this host–tick relationship is of at least potential epidemiological significance.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 779
Author(s):  
Beatriz Mauricio ◽  
Pedro Luiz Mailho-Fontana ◽  
Luciana Almeida Sato ◽  
Flavia Ferreira Barbosa ◽  
Renato Mancini Astray ◽  
...  

Caecilians (order Gymnophiona) are apodan, snake-like amphibians, usually with fossorial habits, constituting one of the most unknown groups of terrestrial vertebrates. As in orders Anura (frogs, tree frogs and toads) and Caudata (salamanders and newts), the caecilian skin is rich in mucous glands, responsible for body lubrication, and poison glands, producing varied toxins used in defence against predators and microorganisms. Whereas in anurans and caudatans skin gland morphology has been well studied, caecilian poison glands remain poorly elucidated. Here we characterised the skin gland morphology of the caecilian Siphonops annulatus, emphasising the poison glands in comparison to those of anurans and salamanders. We showed that S. annulatus glands are similar to those of salamanders, consisting of several syncytial compartments full of granules composed of protein material but showing some differentiated apical compartments containing mucus. An unusual structure resembling a mucous gland is frequently observed in lateral/apical position, apparently connected to the main duct. We conclude that the morphology of skin poison glands in caecilians is more similar to salamander glands when compared to anuran glands that show a much-simplified structure.


Author(s):  
Kerry Perkins

Abstract Welfare within zoos and aquariums has come under increasing scrutiny due to the change in public opinion of animals in captivity. It is vital that as an industry mechanisms and frameworks are in place to determine welfare of animals within our care. Due to potential bias in current welfare models toward terrestrial vertebrates, it is important to determine whether they can be utilised in differing environments such as aquariums. Using the most recent five domain model (Mellor, 2017) the possible application within public aquaria is discussed, considering each domain in respect to aquatic invertebrates, an often-neglected group of organisms when considering welfare in aquaria. This review highlights the additional considerations needed when applying the five domain model to this diverse group of organisms. Furthermore, the identification of gaps within the current literature is discussed in respect to whether the full five domain model can be currently be applied at this time.


Sign in / Sign up

Export Citation Format

Share Document