Customized a priori information in gravity inversion of a sedimentary basin relief

Author(s):  
Darcicléa Ferreira Santos ◽  
João Batista C. da Silva
Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Valeria Cristina F. Barbosa ◽  
João B. C. Silva

Extending the compact gravity inversion technique by incorporating a priori information about the maximum compactness of the anomalous sources along several axes provides versatility. Thus, the method may also incorporate information about limits in the axes lengths or greater concentration of mass along one or more directions. The judicious combination of different constraints on the anomalous mass distribution allows the introduction of several kinds of a priori information about the (arbitrary) shape of the sources. This method is particularly applicable to constant, linear density sources such as mineralizations along faults and intruded sills, dikes, and laccoliths in a sedimentary basin. The correct source density must be known with a maximum uncertainty of 40 percent; otherwise, the inversion produces thicker bodies for densities smaller than the true value and vice‐versa. Because of the limitations of the inverse gravity problem, the proposed technique requires an empirical technique to analyze the sensitivity of solutions to uncertainties in the a priori information. The proposed technique is based on a finite number of acceptable solutions, presumably representative of the ambiguity region. By using standard statistical techniques, each parameter is assigned a coefficient measuring its uncertainty. The known hematite and magnetite ore body shape, in the vicinity of Iron Mountain, MO, was reproduced quite well using this inversion technique.


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1438-1449 ◽  
Author(s):  
Seiichi Nagihara ◽  
Stuart A. Hall

In the northern continental slope of the Gulf of Mexico, large oil and gas reservoirs are often found beneath sheetlike, allochthonous salt structures that are laterally extensive. Some of these salt structures retain their diapiric feeders or roots beneath them. These hidden roots are difficult to image seismically. In this study, we develop a method to locate and constrain the geometry of such roots through 3‐D inverse modeling of the gravity anomalies observed over the salt structures. This inversion method utilizes a priori information such as the upper surface topography of the salt, which can be delineated by a limited coverage of 2‐D seismic data; the sediment compaction curve in the region; and the continuity of the salt body. The inversion computation is based on the simulated annealing (SA) global optimization algorithm. The SA‐based gravity inversion has some advantages over the approach based on damped least‐squares inversion. It is computationally efficient, can solve underdetermined inverse problems, can more easily implement complex a priori information, and does not introduce smoothing effects in the final density structure model. We test this inversion method using synthetic gravity data for a type of salt geometry that is common among the allochthonous salt structures in the Gulf of Mexico and show that it is highly effective in constraining the diapiric root. We also show that carrying out multiple inversion runs helps reduce the uncertainty in the final density model.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 351 ◽  
Author(s):  
Daniele Sampietro ◽  
Martina Capponi

To solve the inverse gravimetric problem, i.e., to estimate the mass density distribution that generates a certain gravitational field, at local or regional scale, several parameters have to be defined such as the dimension of the 3D region to be considered for the inversion, its spatial resolution, the size of its border, etc. Determining the ideal setting for these parameters is in general difficult: theoretical solutions are usually not possible, while empirical ones strongly depend on the specific target of the inversion and on the experience of the user performing the computation. The aim of the present work is to discuss empirical strategies to set these parameters in such a way to avoid distortions and errors within the inversion. In particular, the discussion is focused on the choice of the volume of the model to be inverted, the size of its boundary, its spatial resolution, and the spatial resolution of the a-priori information to be used within the data reduction. The magnitude of the possible effects due to a wrong choice of the above parameters is also discussed by means of numerical examples.


2007 ◽  
Vol 38 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Hyoungrae Rim ◽  
Yeong-Sue Park ◽  
Mutaek Lim ◽  
Sung Bon Koo ◽  
Byung Doo Kwon

Geophysics ◽  
2021 ◽  
pp. 1-46
Author(s):  
Zhengwei Xu ◽  
Rui Wang ◽  
Wei Xiong ◽  
Jian Wang ◽  
Dian Wang

Describing and understanding the basement relief of sedimentary basins is vital for oil and gas exploration. The traditional method to map an interface in each spatial direction is based on three-dimensional (3D) modeling of gravity Bouguer anomalies with variable lateral and vertical density contrasts using a priori information derived from other types of geoscience datasets as constraints (e.g., well and/or seismic data). However, in the pre-exploration stage, vertical gravity, gz, which is sometimes the only available geophysical data, are typically used to recover smooth density contrast distributions under a generic set of constraints. Apparently, the use of the gz component is not sufficient to produce geologically reasonable interpretations with high resolution. To address this, we developed a novel process of hybrid inversion, combining gravity migration and inversion using the same gz dataset, to distinguish the complicated interface between basement and sedimentary basin rocks from a full-space inverted density distribution volume. First, a 3D-migrated model delineating the basic sedimentary basin structure was derived using a focusing gravity iterative migration method, where a priori information is not necessary. Subsequently, under the framework of the regularized focusing conjugate inversion algorithm, a high-resolution density contrast model was inverted for the delineation of the basement boundary by integrating the 3D-migrated density model as a priori information. We examined the method using one synthetic example and a field data case, of which a transformed resolution density matrix was developed from logarithmic space to qualitatively evaluate the practical resolutions. The high resolution of density distribution of Cretaceous basement with clear interface was achieved and verified by limited seismic data and strata markers in limited wells.


Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 788-794 ◽  
Author(s):  
João B. C. Silva ◽  
Walter E. Medeiros ◽  
Valéria C. F. Barbosa

To obtain a unique and stable solution to the gravity inverse problem, a priori information reflecting geological attributes of the gravity source must be used. Mathematical conditions to obtain stable solutions are established in Tikhonov's regularization method, where the a priori information is introduced via a stabilizing functional, which may be suitably designed to incorporate some relevant geological information. However, there is no unifying approach establishing general uniqueness conditions for a gravity inverse problem. Rather, there are many theorems, usually establishing just abstract mathematical conditions and making it difficult to devise the type of geological information needed to guarantee a unique solution. In Part I of these companion papers, we show that translating the mathematical uniqueness conditions into geological constraints is an important step not only in establishing the type of geological setting where a particular method may be applied but also in designing new gravity inversion methods. As an example, we analyze three uniqueness theorems in gravimetry restricted to the class of homogeneous bodies with known density and show that the uniqueness conditions established by them are more probably met if the solution is constrained to be a compact body without curled protrusions at their borders. These conditions, together with stabilizing conditions (assuming a simple shape for the source), form a guideline to construct sound gravity inversion methods. A historical review of the gravity interpretation methods shows that several methods implicitly follow this guideline. In Part II we use synthetic examples to illustrate the theoretical results derived in Part I. We also illustrate that the presented guideline is not the only way to design sound inversion methods for the class of homogeneous bodies. We present an alternative approach which produces good results but whose design requires a good dose of the interpreter's art.


Sign in / Sign up

Export Citation Format

Share Document