Three‐dimensional gravity inversion using simulated annealing: Constraints on the diapiric roots of allochthonous salt structures

Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1438-1449 ◽  
Author(s):  
Seiichi Nagihara ◽  
Stuart A. Hall

In the northern continental slope of the Gulf of Mexico, large oil and gas reservoirs are often found beneath sheetlike, allochthonous salt structures that are laterally extensive. Some of these salt structures retain their diapiric feeders or roots beneath them. These hidden roots are difficult to image seismically. In this study, we develop a method to locate and constrain the geometry of such roots through 3‐D inverse modeling of the gravity anomalies observed over the salt structures. This inversion method utilizes a priori information such as the upper surface topography of the salt, which can be delineated by a limited coverage of 2‐D seismic data; the sediment compaction curve in the region; and the continuity of the salt body. The inversion computation is based on the simulated annealing (SA) global optimization algorithm. The SA‐based gravity inversion has some advantages over the approach based on damped least‐squares inversion. It is computationally efficient, can solve underdetermined inverse problems, can more easily implement complex a priori information, and does not introduce smoothing effects in the final density structure model. We test this inversion method using synthetic gravity data for a type of salt geometry that is common among the allochthonous salt structures in the Gulf of Mexico and show that it is highly effective in constraining the diapiric root. We also show that carrying out multiple inversion runs helps reduce the uncertainty in the final density model.

Geophysics ◽  
2001 ◽  
Vol 66 (2) ◽  
pp. 613-626 ◽  
Author(s):  
Xin‐Quan Ma

A global optimization algorithm using simulated annealing has advantages over local optimization approaches in that it can escape from being trapped in local minima and it does not require a good initial model and function derivatives to find a global minimum. It is therefore more attractive and suitable for seismic waveform inversion. I adopt an improved version of a simulated annealing algorithm to invert simultaneously for acoustic impedance and layer interfaces from poststack seismic data. The earth’s subsurface is overparameterized by a series of microlayers with constant thickness in two‐way traveltime. The algorithm is constrained using the low‐frequency impedance trend and has been made computationally more efficient using this a priori information as an initial model. A search bound of each parameter, derived directly from the a priori information, reduces the nonuniqueness problem. Application of this technique to synthetic and field data examples helps one recover the true model parameters and reveals good continuity of estimated impedance across a seismic section. This approach has the capability of revealing the high‐resolution detail needed for reservoir characterization when a reliable migrated image is available with good well ties.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Valeria Cristina F. Barbosa ◽  
João B. C. Silva

Extending the compact gravity inversion technique by incorporating a priori information about the maximum compactness of the anomalous sources along several axes provides versatility. Thus, the method may also incorporate information about limits in the axes lengths or greater concentration of mass along one or more directions. The judicious combination of different constraints on the anomalous mass distribution allows the introduction of several kinds of a priori information about the (arbitrary) shape of the sources. This method is particularly applicable to constant, linear density sources such as mineralizations along faults and intruded sills, dikes, and laccoliths in a sedimentary basin. The correct source density must be known with a maximum uncertainty of 40 percent; otherwise, the inversion produces thicker bodies for densities smaller than the true value and vice‐versa. Because of the limitations of the inverse gravity problem, the proposed technique requires an empirical technique to analyze the sensitivity of solutions to uncertainties in the a priori information. The proposed technique is based on a finite number of acceptable solutions, presumably representative of the ambiguity region. By using standard statistical techniques, each parameter is assigned a coefficient measuring its uncertainty. The known hematite and magnetite ore body shape, in the vicinity of Iron Mountain, MO, was reproduced quite well using this inversion technique.


1990 ◽  
Vol 88 (4) ◽  
pp. 1802-1810 ◽  
Author(s):  
W. A. Kuperman ◽  
Michael D. Collins ◽  
John S. Perkins ◽  
N. R. Davis

Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. G17-G34
Author(s):  
B. Marcela S. Bastos ◽  
Vanderlei C. Oliveira Jr.

We have developed a nonlinear gravity inversion for simultaneously estimating the basement and Moho geometries, as well as the depth of the reference Moho along a profile crossing a passive rifted margin. To obtain stable solutions, we impose smoothness on basement and Moho, force them to be close to previously estimated depths along the profile and also impose local isostatic equilibrium. Different from previous methods, we evaluate the information of local isostatic equilibrium by imposing smoothness on the lithostatic stress exerted at depth. Our method delimits regions that deviate and those that can be considered in local isostatic equilibrium by varying the weight of the isostatic constraint along the profile. It also allows controlling the degree of equilibrium along the profile, so that the interpreter can obtain a set of candidate models that fit the observed data and exhibit different degrees of isostatic equilibrium. Our method also differs from earlier studies because it attempts to use isostasy for exploring (but not necessarily reducing) the inherent ambiguity of gravity methods. Tests with synthetic data illustrate the effect of our isostatic constraint on the estimated basement and Moho reliefs, especially at regions with pronounced crustal thinning, which are typical of passive volcanic margins. Results obtained by inverting satellite data over the Pelotas Basin, a passive volcanic margin in southern Brazil, agree with previous interpretations obtained independently by combining gravity, magnetic, and seismic data available to the petroleum industry. These results indicate that combined with a priori information, simple isostatic assumptions can be very useful for interpreting gravity data on passive rifted margins.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 351 ◽  
Author(s):  
Daniele Sampietro ◽  
Martina Capponi

To solve the inverse gravimetric problem, i.e., to estimate the mass density distribution that generates a certain gravitational field, at local or regional scale, several parameters have to be defined such as the dimension of the 3D region to be considered for the inversion, its spatial resolution, the size of its border, etc. Determining the ideal setting for these parameters is in general difficult: theoretical solutions are usually not possible, while empirical ones strongly depend on the specific target of the inversion and on the experience of the user performing the computation. The aim of the present work is to discuss empirical strategies to set these parameters in such a way to avoid distortions and errors within the inversion. In particular, the discussion is focused on the choice of the volume of the model to be inverted, the size of its boundary, its spatial resolution, and the spatial resolution of the a-priori information to be used within the data reduction. The magnitude of the possible effects due to a wrong choice of the above parameters is also discussed by means of numerical examples.


2015 ◽  
Vol 3 (1) ◽  
pp. SA33-SA49 ◽  
Author(s):  
Qinshan Yang ◽  
Carlos Torres-Verdín

Interpretation of hydrocarbon-bearing shale is subject to great uncertainty because of pervasive heterogeneity, thin beds, and incomplete and uncertain knowledge of saturation-porosity-resistivity models. We developed a stochastic joint-inversion method specifically developed to address the quantitative petrophysical interpretation of hydrocarbon-bearing shale. The method was based on the rapid and interactive numerical simulation of resistivity and nuclear logs. Instead of property values themselves, the estimation method delivered the a posteriori probability of each property. The Markov-chain Monte Carlo algorithm was used to sample the model space to quantify the a posteriori distribution of formation properties. Additionally, the new interpretation method allows the use of fit-for-purpose statistical correlations between water saturation, salt concentration, porosity, and electrical resistivity to implement uncertain, non-Archie resistivity models derived from core data, including those affected by total organic carbon (TOC). In the case of underdetermined estimation problems, i.e., when the number of measurements was lower than the number of unknowns, the use of a priori information enabled plausible results within prespecified petrophysical and compositional bounds. The developed stochastic interpretation technique was successfully verified with data acquired in the Barnett and Haynesville Shales. Core data (including X-ray diffraction data) were combined into a priori information for interpretation of nuclear and resistivity logs. Results consisted of mineral concentrations, TOC, and porosity together with their uncertainty. Eighty percent of the core data was located within the 95% credible interval of estimated mineral/fluid concentrations.


Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. I1-I10 ◽  
Author(s):  
Pejman Shamsipour ◽  
Denis Marcotte ◽  
Michel Chouteau ◽  
Pierre Keating

A new application has been developed, based on geostatistical techniques of cokriging and conditional simulation, for the 3D inversion of gravity data including geologic constraints. The necessary gravity, density, and gravity-density covariance matrices are estimated using the observed gravity data. Then the densities are cokriged or simulated using the gravity data as the secondary variable. The model allows noise to be included in the observations. The method is applied to two synthetic models: a short dipping dike and a stochastic distribution of densities. Then some geologic information is added as constraints to the cokriging system. The results show the ability of the method to integrate complex a priori information. The survey data of the Matagami mining camp are considered as a case study. The inversion method based on cokriging is applied to the residual anomaly to map the geology through the estimation of the density distribution in this region. The results of the inversion and simulation methods are in good agreement with the surface geology of the survey region.


Sign in / Sign up

Export Citation Format

Share Document