Time-lapse Seismic AVP Analysis on the Sleipner CO2 Storage Monitoring Data Using CFP Processing

Author(s):  
F. P. Neele ◽  
R. J. Arts
2010 ◽  
Vol 29 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Andy Chadwick ◽  
Gareth Williams ◽  
Nicolas Delepine ◽  
Vincent Clochard ◽  
Karine Labat ◽  
...  

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA61-WA67 ◽  
Author(s):  
Zhaoyun Zong ◽  
Xingyao Yin ◽  
Guochen Wu ◽  
Zhiping Wu

Elastic inverse-scattering theory has been extended for fluid discrimination using the time-lapse seismic data. The fluid factor, shear modulus, and density are used to parameterize the reference medium and the monitoring medium, and the fluid factor works as the hydrocarbon indicator. The baseline medium is, in the conception of elastic scattering theory, the reference medium, and the monitoring medium is corresponding to the perturbed medium. The difference in the earth properties between the monitoring medium and the baseline medium is taken as the variation in the properties between the reference medium and perturbed medium. The baseline and monitoring data correspond to the background wavefields and measured full fields, respectively. And the variation between the baseline data and monitoring data is taken as the scattered wavefields. Under the above hypothesis, we derived a linearized and qualitative approximation of the reflectivity variation in terms of the changes of fluid factor, shear modulus, and density with the perturbation theory. Incorporating the effect of the wavelet into the reflectivity approximation as the forward solver, we determined a practical prestack inversion approach in a Bayesian scheme to estimate the fluid factor, shear modulus, and density changes directly with the time-lapse seismic data. We evaluated the examples revealing that the proposed approach rendered the estimation of the fluid factor, shear modulus, and density changes stably, even with moderate noise.


2021 ◽  
Vol 110 ◽  
pp. 103417
Author(s):  
Dong Li ◽  
Suping Peng ◽  
Xingguo Huang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  

2021 ◽  
Vol 40 (6) ◽  
pp. 434-441
Author(s):  
Don White ◽  
Thomas M. Daley ◽  
Björn Paulsson ◽  
William Harbert

Borehole geophysical methods are a key component of subsurface monitoring of geologic CO2 storage sites because boreholes form a locus where geophysical measurements can be compared directly with the controlling geology. Borehole seismic methods, including intrawell, crosswell, and surface-to-borehole acquisition, are useful for site characterization, surface seismic calibration, 2D/3D time-lapse imaging, and microseismic monitoring. Here, we review the most common applications of borehole seismic methods in the context of storage monitoring and consider the role that detailed geophysical simulations can play in answering questions that arise when designing monitoring plans. Case study examples are included from the multitude of CO2 monitoring projects that have demonstrated the utility of borehole seismic methods for this purpose over the last 20 years.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA1-WA13 ◽  
Author(s):  
Lisa A. N. Roach ◽  
Donald J. White ◽  
Brian Roberts

Two 3D time-lapse seismic surveys were acquired in 2012 and 2013 at the Aquistore [Formula: see text] storage site prior to the start of [Formula: see text] injection. Using these surveys, we determined the background time-lapse noise at the site and assessed the feasibility of using a sparse areal permanent receiver array as a monitoring tool. Applying a standard processing sequence to these data, we adequately imaged the reservoir at 3150–3350 m depth. Evaluation of the impact of each processing step on the repeatability revealed a general monotonic increase in similarity between the data sets as a function of processing. The prestack processing sequence reduced the normalized root mean squared difference (nrms) from 1.13 between the raw stacks to 0.13 after poststack time migration. The postmigration cross-equalization sequence further reduced the global nrms to 0.07. A simulation of the changes in seismic response due to a range of [Formula: see text] injection scenarios suggested that [Formula: see text] was detectable within the reservoir at the Aquistore site provided that zones of greater thickness than 6–13 m have reached [Formula: see text] saturations of greater than 5%.


2003 ◽  
Vol 43 (1) ◽  
pp. 567 ◽  
Author(s):  
J.J. McKenna ◽  
B. Gurevich ◽  
M. Urosevic ◽  
B.J. Evans

Sequestration of anthropogenic CO2 into underground brine-saturated reservoirs is an immediate option for Australia to reduce CO2 emissions into the atmosphere. Many sites for CO2 storage have been defined within many Australian sedimentary basins. It is anticipated that seismic technology will form the foundation for monitoring CO2 storage within the subsurface, although it is recognised that several other technologies will also be used in support of seismic or in situations where seismic recording is not suitable. The success of seismic monitoring will be determined by the magnitude of the change in the elastic properties of the reservoir during the lifecycle of CO2 storage. In the short-term, there will be a strong contrast in density and compressibility between free CO2 and brine. The contrast between these fluids is greater at shallower depth and higher temperature where CO2 resembles a vapour. The significant change in the elastic moduli of the reservoir will enable time-lapse seismic methods to readily monitor structural or hydrodynamic trapping of CO2 below an impermeable seal. Because the acoustic contrast between brine saturated with CO2 and brine containing no dissolved CO2 is very slight, however, dissolved CO2 is unlikely to be detected by any seismic technology, including high-resolution borehole seismic. The detection of increases in porosity, associated with dissolution of susceptible minerals within the reservoir may provide a means for qualitative monitoring of CO2 dissolution. Conversion of aqueous CO2 into carbonate minerals should cause a detectable rise in the elastic moduli of the rock frame, especially the shear moduli. The magnitude of this rise increases with depth and demonstrates the potential contribution that can be made from repeated shear-wave and multi-component seismic measurements. Forward modelling suggests that the optimal reservoir depth for seismic monitoring of CO2 storage within an unconsolidated reservoir is between 1,000 and 2,500 m. Higher reservoir temperature is also preferred so that free CO2 will resemble a vapour.


Sign in / Sign up

Export Citation Format

Share Document