Seismic Investigation of the Earth's Crust in the Sub-shelf Zone of North-eastern Russia – Chukot Peninsula

Author(s):  
V. L. Kuznetsov ◽  
A. S. Salnikov ◽  
V. V. Titarenko ◽  
V. M. Solovyev
2020 ◽  
Vol 243 ◽  
pp. 259
Author(s):  
Viktor Alekseev

We investigated the deep structure of the lithosphere and the geodynamic conditions of granitoid magmatism in the Eastern Russia within the borders of the Far Eastern Federal District. The relevance of the work is determined by the need to establish the geotectonic and geodynamic conditions of the granitoids petrogenesis and ore genesis in the Russian sector of the Pacific Ore Belt. The purpose of the article is to study the deep structure of the lithosphere and determine the geodynamic conditions of granitoid magmatism in the East of Russia. The author's data on the magmatism of ore regions, regional granitoids correlations, archive and published State Geological Map data, survey mapping, deep seismic sounding of the earth's crust, gravimetric survey, geothermal exploration, and other geophysical data obtained along geotraverses. The magma-controlling concentric geostructures of the region are distinguished and their deep structure is studied. The connection of plume magmatism with deep structures is traced. The chain of concentric geostructures of Eastern Russia controls the trans-regional zone of leucocratization of the earth's crust with a width of more than 1000 km, which includes the Far Eastern zone of Li-F granites. Magmacontrolling concentric geostructures are concentrated in three granitoid provinces: Novosibirsk-Chukotka, Yano-Kolyma, and Sikhote-Alin. The driving force of geodynamic processes and granitoid magmatism was mantle heat fluxes in the reduced zones of the lithospheric slab. The distribution of slab windows along the Pacific mobile belt's strike determines the location of concentric geostructures and the magnitude of granitoid magmatism in the regional provinces. Mantle diapirs are the cores of granitoid ore-magmatic systems. The location of the most important ore regions of the Eastern Russia in concentric geostructures surrounded by annuli of negative gravity anomalies is the most important regional metallogenic pattern reflecting the correlation between ore content and deep structure of the earth's crust.


Author(s):  
O. A. Kuchay

The calculation of seismotectonic deformations for different depth levels 1–15, 16–35, 36–70 km was performed according to the data of 1819 mechanisms of earthquake foci that occurred in Central Asia (φ = 25° – 60° N, λ=60° – 115° E) for the period from 1976 to the end of July 2020 with M>4.7. The orientation of the main axes of the strain tensor reconstructed from the mechanisms of earthquake foci with M>4.7 coincide at different depth levels with mainly submeridional and north-eastern shortening and varying elongation from sublatitude to north-western and near-vertical. The consistency of the orientation of the main axes of shortening and elongation reconstructed from seismological materials and from the published results of calculating GPS observations, is traced.


2020 ◽  
Vol 29 (3) ◽  
pp. 495-501
Author(s):  
Sergii V. Goshovskyi ◽  
Oleksii O. Likhosherstov ◽  
Olexandr M. Shevchenko ◽  
Svitlana G. Slonitska

Geophysical model inputs were the results of a survey on an anomalous magnetic field and a gravitational field of the Black Sea’s north-western shelf. Thegeophysical profiles of the complex effective parameter (CEP) are calculated and graphed. Complex effective parameter characterizes the relationship between the effective densities and the magnetization by their spatial distribution. Effective parameters (magnetization, density, CEP) were calculated within the studyarea with their distribution on the optimum depth. The profiles are meridional and parallel to each other, direction of the profiles from south to north. The distance between the profiles is 50 kilometers. The generalized deep structure of the study area was elucidated using the graphed profiles. The distribution of CEP on vertical sections within the shelf zone of the western Black Sea basin emphasizes the position in the space of tectonic elements. That is gives an idea about the nature and structure of the region’s lithosphere and their relationship with the spatial distribution of deposits and manifestations of hydrocarbons. Structural and geological interpretation of the CEP profile data was performed. According to the spatial consistency of the correlation by structures, the profiles are conditionally divided into two groups, the western and the eastern. Structural differences in profiles are explained by the presence of the Odesa-Sinop fault zone between the groups. According to the results of profiles interpretation and works of previous researchers, paleogeodynamic processes were established. That significantly complicated the geological structure of the Black Sea’s north-western shelf. The interpretation of the CEP field distribution gives additional arguments in favour of the Earth crust evolution on the north-western shelf of the Black Sea in the conditions of a passive continental margin with short periods of reverse motions with obligatory subduction due to the activation of rifting, the nature of which is yet to be studied. According to the results of interpretation, the presence of the Earth’s crust destruction zone was established. With the help of spatial analysis, the spatial regularities of the gas seeping manifestations with the zone of destruction of the Earth’s crust of continental type and sites of rising of the mantle surface are established.


1915 ◽  
Vol 79 (2058supp) ◽  
pp. 382-383
Author(s):  
Alphonse Berget

2017 ◽  
Vol S36 ◽  
pp. 3-10
Author(s):  
P. G. Dyadkov ◽  
◽  
L. V. Tsibizov ◽  
M. P. Kozlova ◽  
A. V. Levicheva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document