2007 ◽  
Author(s):  
William L. Soroka ◽  
Taha Al-Dayyani ◽  
Christian J. Strohmenger ◽  
Hafez H. Hafez ◽  
Mahfoud Salah Al-Jenaibi

Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


2015 ◽  
Vol 55 (2) ◽  
pp. 412 ◽  
Author(s):  
Ramses Meza ◽  
Guy Duncan ◽  
Konstantinos Kostas ◽  
Stanislav Kuzmin ◽  
Mauricio Florez ◽  
...  

Time-lapse dedicated 3D seismic surveys were acquired across the Pyrenees oil and gas field, Exmouth Sub-basin to map production-induced changes in the reservoir. Rock-physics 4D modelling showed that changes in pore pressure and fluid saturation would produce a time-lapse seismic response of sufficient magnitude, in both amplitude and velocity, to overcome time-lapse noise. The dominant observed effect is associated with gas coming out of solution. The reservoir simulation model forecasted that reservoir depletion would cause gas breakout that would impact the elastic properties of the reservoir. The effect of gas breakout can be clearly observed on the 4D seismic data as a change in both amplitude and velocity. The analysis of the seismic datasets was proven to be enhanced significantly by using inversion methodologies. These included a band-limited extended-elastic impedance (EEI) approach, as well as simultaneous 4D elastic inversion. These datasets, combined with rock physics modelling, enabled quantitative interpretation of the change in 4D seismic response which was a key tool for assisting with the infill well placement and field development strategy.


2008 ◽  
Author(s):  
Ganglin Chen ◽  
Kelly Wrobel ◽  
Anupam Tiwari ◽  
Jie Zhang ◽  
Michael Payne ◽  
...  
Keyword(s):  

Author(s):  
G. Chen ◽  
K. Wrobel ◽  
A. Tiwari ◽  
J. Zhang ◽  
M. Payne ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document