Elastic Wave Equation Rotated-Grid Forward Modeling and Imaging Based on Wave Separation Method

Author(s):  
W.Z. Wang ◽  
Z. Qin ◽  
T. Hu ◽  
Y.D. Li ◽  
Y. Zhang
Author(s):  
Amila Sudu Ambegedara ◽  
U. G. I. G. K. Udagedara ◽  
Erik M. Bollt

Full-waveform inversion (FWI) is a non-destructive health monitoring technique that can be used to identify and quantify the embedded anomalies. The forward modeling of the FWI consists of a simulation of elastic wave equation to generate synthetic data. Thus the accuracy of the FWI method highly depends on the simulation method used in the forward modeling. Simulation of a 3-D seismic survey with small-scale heterogeneities is impossible with the classic finite difference approach even on modern super computers. In this work, we adopted a mesh refinement approach for simulation of the wave equation in the presence of small-scale heterogeneities. This approach uses cubic smoothing spline interpolation for spatial mesh refinement step in solving the wave equation. The simulation results for the 2-D elastic wave equation are presented and compared with the classic finite difference approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ke-Yang Chen

Elastic wave equation simulation offers a way to study the wave propagation when creating seismic data. We implement an equivalent dual elastic wave separation equation to simulate the velocity, pressure, divergence, and curl fields in pure P- and S-modes, and apply it in full elastic wave numerical simulation. We give the complete derivations of explicit high-order staggered-grid finite-difference operators, stability condition, dispersion relation, and perfectly matched layer (PML) absorbing boundary condition, and present the resulting discretized formulas for the proposed elastic wave equation. The final numerical results of pure P- and S-modes are completely separated. Storage and computing time requirements are strongly reduced compared to the previous works. Numerical testing is used further to demonstrate the performance of the presented method.


Sign in / Sign up

Export Citation Format

Share Document