scholarly journals Finite-Difference Simulation of Elastic Wave with Separation in Pure P- and S-Modes

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ke-Yang Chen

Elastic wave equation simulation offers a way to study the wave propagation when creating seismic data. We implement an equivalent dual elastic wave separation equation to simulate the velocity, pressure, divergence, and curl fields in pure P- and S-modes, and apply it in full elastic wave numerical simulation. We give the complete derivations of explicit high-order staggered-grid finite-difference operators, stability condition, dispersion relation, and perfectly matched layer (PML) absorbing boundary condition, and present the resulting discretized formulas for the proposed elastic wave equation. The final numerical results of pure P- and S-modes are completely separated. Storage and computing time requirements are strongly reduced compared to the previous works. Numerical testing is used further to demonstrate the performance of the presented method.

Geophysics ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 611-624 ◽  
Author(s):  
C. J. Randall

Extant absorbing boundary conditions for the elastic wave equation are generally effective only for waves nearly normally incident upon the boundary. High reflectivity is exhibited for waves traveling obliquely to the boundary. In this paper, a new and efficient absorbing boundary condition for two‐dimensional and three‐dimensional finite‐difference calculations of elastic wave propagation is presented. Compressional and shear components of the incident vector displacement fields are separated by calculating intermediary scalar potentials, allowing the use of Lindman’s boundary condition for scalar fields, which is highly absorbing for waves incident at any angle. The elastic medium is assumed to be homogeneous in the region immediately adjacent to the boundary. The reflectivity matrix of the resulting absorbing boundary for elastic waves is calculated, including the effects of finite‐difference truncation error. For effectively all angles of incidence, reflectivities are much smaller than those of the commonly employed paraxial absorbing boundaries, and the boundary condition is stable for any physical Poisson’s ratio. The nearly complete absorption predicted by the reflectivity matrix calculations, even at near grazing incidence, is demonstrated in a finite‐difference application.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. T207-T224 ◽  
Author(s):  
Zhiming Ren ◽  
Zhen Chun Li

The traditional high-order finite-difference (FD) methods approximate the spatial derivatives to arbitrary even-order accuracy, whereas the time discretization is still of second-order accuracy. Temporal high-order FD methods can improve the accuracy in time greatly. However, the present methods are designed mainly based on the acoustic wave equation instead of elastic approximation. We have developed two temporal high-order staggered-grid FD (SFD) schemes for modeling elastic wave propagation. A new stencil containing the points on the axis and a few off-axial points is introduced to approximate the spatial derivatives. We derive the dispersion relations of the elastic wave equation based on the new stencil, and we estimate FD coefficients by the Taylor series expansion (TE). The TE-based scheme can achieve ([Formula: see text])th-order spatial and ([Formula: see text])th-order temporal accuracy ([Formula: see text]). We further optimize the coefficients of FD operators using a combination of TE and least squares (LS). The FD coefficients at the off-axial and axial points are computed by TE and LS, respectively. To obtain accurate P-, S-, and converted waves, we extend the wavefield decomposition into the temporal high-order SFD schemes. In our modeling, P- and S-wave separation is implemented and P- and S-wavefields are propagated by P- and S-wave dispersion-relation-based FD operators, respectively. We compare our schemes with the conventional SFD method. Numerical examples demonstrate that our TE-based and TE + LS-based schemes have greater accuracy in time and better stability than the conventional method. Moreover, the TE + LS-based scheme is superior to the TE-based scheme in suppressing the spatial dispersion. Owing to the high accuracy in the time and space domains, our new SFD schemes allow for larger time steps and shorter operator lengths, which can improve the computational efficiency.


Geophysics ◽  
1992 ◽  
Vol 57 (2) ◽  
pp. 218-232 ◽  
Author(s):  
A. Vafidis ◽  
F. Abramovici ◽  
E. R. Kanasewich

Two finite‐difference schemes for solving the elastic wave equation in heterogeneous two‐dimensional media are implemented on a vector computer. A modified Lax‐Wendroff scheme that is second‐order accurate both in time and space and is a version of the MacCormack scheme that is second‐order accurate in time and fourth‐order in space. The algorithms are based on the matrix times vector by diagonals technique that is fully vectorized and is described using a novel notation for vector supercomputer operations. The technique described can be implemented on a vector processor of modest dimensions and increase the applicability of finite differences. The two difference operators are compared and the programs are tested for a simple case of standing sinusoidal waves for which the exact solution is known and also for a two‐layer model with a line source. A comparison of the results for an actual well‐to‐well experiment verifies the usefulness of the two‐dimensional approach in modeling the results.


Geophysics ◽  
1989 ◽  
Vol 54 (9) ◽  
pp. 1141-1152 ◽  
Author(s):  
C. J. Randall

This paper describes an absorbing boundary condition for finite‐difference modeling of elastic wave propagation in two and three dimensions. The boundary condition is particularly effective for obliquely incident waves, typically quite troublesome for absorbing boundaries. Analytical predictions of the boundary reflection coefficients of a few percent or less for angles of incidence up to 89° are verified in example finite‐difference applications. The algorithm is appropriate for use in a velocity‐stress finite‐difference (vs‐fd) formulation. It is computationally simpler than a similar absorbing boundary given previously for the standard displacement formulation. A second algorithm is presented which may be advantageous when the boundary of interest is exposed to strong evanescent waves. Both algorithms require that the adjacent elastic medium be locally homogeneous.


Sign in / Sign up

Export Citation Format

Share Document