Monitoring CO2 Injection at the Illinois Basin -- Decatur Project with Time-lapse 3D VSPs

Author(s):  
M. L. Couëslan ◽  
J. Gulati ◽  
A. Campbell ◽  
L. Nutt
2021 ◽  
Vol 40 (11) ◽  
pp. 823-830
Author(s):  
Nikita Bondarenko ◽  
Sherilyn Williams-Stroud ◽  
Jared Freiburg ◽  
Roman Makhnenko

Carbon sequestration activities are increasing in a global effort to mitigate the effects of greenhouse gas emissions on the climate. Injection of wastewater and oil-field fluids is known to induce seismic activity. This makes it important to understand how that risk relates to CO2 injection. Injection of supercritical CO2 into the Cambrian Mt. Simon sandstone in Illinois Basin induced microseismicity that was observed below the reservoir, primarily in the Precambrian crystalline basement. Geomechanical and flow properties of rock samples from the involved formations were measured in the laboratory and compared with geophysical log data and petrographic analysis. The controlling factors for induced microseismicity in the basement seem to be the hydraulic connection between the reservoir and basement rock and reactivation of pre-existing faults or fractures in the basement. Additionally, the presence of a laterally continuous low-permeability layer between reservoir and basement may have prevented downward migration of pore pressure and reactivation of critically stressed planes of weakness in the basement. Results of the geomechanical characterization of this intermediate layer indicate that it may act as an effective barrier for fluid penetration into the basement and that induced microseismicity is likely to be controlled by the pre-existing system of faults. This is because the intact material is not expected to fail under the reservoir stress conditions.


2017 ◽  
Vol 5 (2) ◽  
pp. T243-T257 ◽  
Author(s):  
Martin Landrø ◽  
Mark Zumberge

We have developed a calibrated, simple time-lapse seismic method for estimating saturation changes from the [Formula: see text]-storage project at Sleipner offshore Norway. This seismic method works well to map changes when [Formula: see text] is migrating laterally away from the injection point. However, it is challenging to detect changes occurring below [Formula: see text] layers that have already been charged by some [Formula: see text]. Not only is this partly caused by the seismic shadow effects, but also by the fact that the velocity sensitivity for [Formula: see text] change in saturation from 0.3 to 1.0 is significantly less than saturation changes from zero to 0.3. To circumvent the seismic shadow zone problem, we combine the time-lapse seismic method with time-lapse gravity measurements. This is done by a simple forward modeling of gravity changes based on the seismically derived saturation changes, letting these saturation changes be scaled by an arbitrary constant and then by minimizing the least-squares error to obtain the best fit between the scaled saturation changes and the measured time-lapse gravity data. In this way, we are able to exploit the complementary properties of time-lapse seismic and gravity data.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Zoann Low ◽  
Parimal Arjun Patil ◽  
Debasis Priyadarshan Das ◽  
Prasanna Chidambaram ◽  
...  

Abstract Monitoring of CO2 plume migration in a depleted carbonate reservoir is challenging and demand comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic exhibits the migration of CO2 plume within geological storage but in the area affected by gas chimney due to poor signal-to-noise ratio (SNR), uncertainty in identifying and interpretation of CO2 plume gets exaggerated. High resolution 3D vertical seismic profile (VSP) survey using distributed acoustic sensor (DAS) technology fulfil the objective of obtaining the detailed subsurface image which include CO2 plume migration, reservoir architecture, sub-seismic faults and fracture networks as well as the caprock. Integration of quantitative geophysics and dynamic simulation with illumination modelling dignify the capabilities of 3D DAS-VSP for CO2 plume migration monitoring. The storage site has been studied in detailed and an integrated coupled dynamic simulation were performed and results were integrated with seismic forward modeling to demonstrate the CO2 plume migration with in reservoir and its impact on seismic amplitude. 3D VSP illumination modelling was carried out by integrating reservoir and overburden interpretations, acoustic logs and seismic velocity to illustrate the subsurface coverage area at top of reservoir. Several acquisition survey geometries were simulated based on different source carpet size for effective surface source contribution for subsurface illumination and results were analyzed to design the 3D VSP survey for early CO2 plume migration monitoring. The illumination simulation was integrated with dynamic simulation for fullfield CO2 plume migration monitoring with 3D DAS-VSP by incorporating Pseudo wells illumination analysis. Results of integrated coupled dynamic simulation and 4D seismic feasibility were analyzed for selection of best well location to deploy the multi fiber optic sensor system (M-FOSS) technology. Amplitude response of synthetic AVO (amplitude vs offsets) gathers at the top of carbonate reservoir were analyzed for near, mid and far angle stacks with respect to pre-production as well as pre-injection reservoir conditions. Observed promising results of distinguishable 25-30% of CO2 saturation in depleted reservoir from 4D time-lapse seismic envisage the application of 3D DAS-VSP acquisition. The source patch analysis of 3D VSP illumination modelling results indicate that a source carpet of 6km×6km would be cos-effectively sufficient to produce a maximum of approximately 2km in diameter subsurface illumination at the top of the reservoir. The Pseudo wells illumination analysis results show that current planned injection wells would probably able to monitor early CO2 injection but for the fullfield monitoring additional monitoring wells or a hybrid survey of VSP and surface seismic would be required. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from 3D DAS-VSP will reduce the associated risks.


2007 ◽  
Author(s):  
R. J. Arts ◽  
R. A. Chadwick ◽  
O. Eiken ◽  
M. Trani ◽  
S. Dortland

2018 ◽  
Vol 75 ◽  
pp. 41-51 ◽  
Author(s):  
Qiang Luo ◽  
Yibo Wang ◽  
Yongsheng Wang ◽  
Maoshan Chen ◽  
Yikang Zheng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document