3D DAS-VSP Illumination Modeling for CO2 Plume Migration Monitoring in Offshore Sarawak, Malaysia

2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Zoann Low ◽  
Parimal Arjun Patil ◽  
Debasis Priyadarshan Das ◽  
Prasanna Chidambaram ◽  
...  

Abstract Monitoring of CO2 plume migration in a depleted carbonate reservoir is challenging and demand comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic exhibits the migration of CO2 plume within geological storage but in the area affected by gas chimney due to poor signal-to-noise ratio (SNR), uncertainty in identifying and interpretation of CO2 plume gets exaggerated. High resolution 3D vertical seismic profile (VSP) survey using distributed acoustic sensor (DAS) technology fulfil the objective of obtaining the detailed subsurface image which include CO2 plume migration, reservoir architecture, sub-seismic faults and fracture networks as well as the caprock. Integration of quantitative geophysics and dynamic simulation with illumination modelling dignify the capabilities of 3D DAS-VSP for CO2 plume migration monitoring. The storage site has been studied in detailed and an integrated coupled dynamic simulation were performed and results were integrated with seismic forward modeling to demonstrate the CO2 plume migration with in reservoir and its impact on seismic amplitude. 3D VSP illumination modelling was carried out by integrating reservoir and overburden interpretations, acoustic logs and seismic velocity to illustrate the subsurface coverage area at top of reservoir. Several acquisition survey geometries were simulated based on different source carpet size for effective surface source contribution for subsurface illumination and results were analyzed to design the 3D VSP survey for early CO2 plume migration monitoring. The illumination simulation was integrated with dynamic simulation for fullfield CO2 plume migration monitoring with 3D DAS-VSP by incorporating Pseudo wells illumination analysis. Results of integrated coupled dynamic simulation and 4D seismic feasibility were analyzed for selection of best well location to deploy the multi fiber optic sensor system (M-FOSS) technology. Amplitude response of synthetic AVO (amplitude vs offsets) gathers at the top of carbonate reservoir were analyzed for near, mid and far angle stacks with respect to pre-production as well as pre-injection reservoir conditions. Observed promising results of distinguishable 25-30% of CO2 saturation in depleted reservoir from 4D time-lapse seismic envisage the application of 3D DAS-VSP acquisition. The source patch analysis of 3D VSP illumination modelling results indicate that a source carpet of 6km×6km would be cos-effectively sufficient to produce a maximum of approximately 2km in diameter subsurface illumination at the top of the reservoir. The Pseudo wells illumination analysis results show that current planned injection wells would probably able to monitor early CO2 injection but for the fullfield monitoring additional monitoring wells or a hybrid survey of VSP and surface seismic would be required. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from 3D DAS-VSP will reduce the associated risks.

2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
Prasanna Chidambaram ◽  
Prasanna Kumar Chandran ◽  
...  

Abstract CO2 sequestration in depleted carbonate reservoir stipulate incorporation of comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic is sine qua non for Monitoring, Measurement and Verification (MMV) planning to demonstrate the migration of CO2 plume within geological storage. An ingenious, adaptive and site specific MMV plan for monitoring CO2 plume is paramount to minimize possible subsurface and project integrity risks. Integration of dynamic simulation with seismic forward modeling aggrandize the capabilities of 4D seismic in CO2 sequestration projects. Depleted carbonate reservoir has been thoroughly studied and its geomechanical and geochemical modeling results were coupled into dynamic simulation. Reservoir porosity and fluid properties along with CO2 saturation and injection pressure distribution within each reservoir level were generated. The dynamic simulation results were integrated with seismic forward modeling to demonstrate the CO2 plume migration and its impact on seismic amplitude. Fluid acoustic properties were computed for carbonate reservoir using FLAG method. Selection of wells was based on availability of superior quality acoustic logs as well as those representing the reservoir best. Gassmann fluid substitution exercise was carried using dry rock modeling. Several scenarios were generated, and results were analyzed to demonstrate the effect of CO2 saturation and pressure build-ups within reservoir on the seismic amplitude due to continuous CO2 injection. Synthetic seismic AVO gathers were generated for angles ranging from 5 to 50 degree. Near, Mid and Far seismic amplitude response at the top of carbonate reservoir were analyzed with respect to in-situ condition for each scenario. Results reveal that CO2 saturation as low as 25 - 30% in depleted carbonate reservoir can be distinguished from 4D time-lapse seismic. With continuous CO2 injection, the reservoir pressure increases and this in turn controls the properties of both in-situ and injected fluids. The gradual changes in fluid properties and their impact on bulk acoustic properties of reservoir were modeled to assess the feasibility of using 4D seismic as a predictive tool for detection of localized and provincial pressure build-ups. Modeling results show that although observed changes in amplitude on synthetic gathers were subtle, it is expected that 4D seismic with high signal-to-noise ratio possibly be able to image such localized pressure build-ups. To monitor CO2 plume migration as well as localized pressure build-ups, we recommend acquiring multi-azimuth (MAZ) surface seismic in combination with 3D DAS-VSP for superior subsurface imaging. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from MAZ surface seismic and 3D DAS-VSP will reduce the associated risks.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
Prasanna Chidambaram ◽  
Zoann Low ◽  
...  

Abstract CO2 sequestration is a process for eternity with a possibility of zero-degree failure. Monitoring, Measurement and Verification (MMV) planning of CO2 sequestration is crucial along with geological site selection, transportation and injection process. Several geological formations have been evaluated in the past for potential storage site which divulges the containment capacity of identified large, depleted gas reservoirs as well as long term conformance. Offshore environment makes MMV plan challenging and demands rigorous integration of monitoring technologies to optimize project economic and involved logistics. The role of MMV is critical for sustainability of the CO2 storage project as it ensures that injected CO2 in the reservoir is intact and safely stored for hundreds of years post-injection. Field specific MMV technologies for CO2 plume migration with proactive approach were identified after exercising pre-defined screening criteria. Marine CO2 dispersion study is carried out to confirm the impact of any potential leakage along existing wells and faults, and to understand the CO2 behavior in marine environment in the event of leakage. Study incorporates integration of G&G subsurface and Meta-Ocean & Environment data along with other leakage character information. Multi-Fiber Optic Sensors System (M-FOSS) to be installed in injector wells for monitoring well & reservoir integrity, overburden integrity and monitoring of early CO2 plume migration by acquiring & analyzing the distributed sensing data (DTS/DPS/DAS/DSS). Based on 3D couple modeling, a maximum injection rate of approximately 200 MMscfd of permeate stream produced from a high CO2 contaminated gas field can be achieved. Injectivity studies indicate that over 100 MMSCFD of CO2 injection rates into depleted gas reservoir is possible from a single injector. Injectivity results are integrated with dynamic simulation to determine number and location of injector wells. 3D DAS-VSP simulation results show that a subsurface coverage of approximately 3 km2 per well is achievable, which along with simulated CO2 plume extent help to determine the number of wells required to get maximum monitoring coverage for the MMV planning. As planned injector wells are field centric and storage site area is large, DAS-VSP find limited coverage to monitor the CO2 plume. To overcome this challenge, requirement of surface seismic acquisition survey is recommended for full field monitoring. An integrated MMV plan is designed for cost-effective long-term offshore monitoring of CO2 plume migration. The present study discusses the impacting parameters which make the whole process environmentally sustainable, economically viable and adhering to national and international regulations.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Prasanna Chidambaram ◽  
Ahmad Ismail Azahree ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
...  

Abstract CO2 sequestration is a process for eternity with a possibility of zero-degree failure. One of the key components of the CO2 Sequestration Project is to have a site-specific, risk-based and adaptive Monitoring, Measurement and Verification (MMV) plan. The storage site has been studied thoroughly and is understood to be inherently safe for CO2 sequestration. However, it is incumbent on operator to manage and minimize storage risks. MMV planning is critical along with geological site selection, transportation and storage process. Geological evaluation study of the storage site suggests the containment capacity of identified large depleted gas reservoirs as well as long term conformance due to thick interval. The fault-seal analysis and reservoir integrity study contemplate long-term security of the CO2 storage. An integrated 3D reservoir dynamic simulation model coupled with geomechanical and geochemical models were performed. This helps in understanding storage capacity, trapping mechanisms, reservoir integrity, plume migration path, and injectivity. To demonstrate that CO2 plume migration can be mapped from the seismic, a 4D Seismic feasibility study was carried out using well and fluid data. Gassmann fluid substitution was performed in carbonate reservoir at well, and seismic response of several combination of fluid saturation scenarios on synthetic gathers were analyzed. The CO2 dispersion study, which incorporate integration of subsurface, geomatic and metocean & environment data along with leakage character information, was carried out to understand the potential leakage pathway along existing wells and faults which enable to design a monitoring plan accordingly. The monitoring of wells & reservoir integrity, overburden integrity will be carried out by Fiber Optic System to be installed in injection wells. Significant difference in seismic amplitude observed at the reservoir top during 4D seismic feasibility study for varying CO2 saturation suggests that monitoring of CO2 plume migration from seismic is possible. CO2 plume front with as low as 25% saturation can be discriminated provided seismic data has high signal noise ratio (SNR). 3D DAS-VSP acquisition modeling results show that a subsurface coverage of approximately 3 km2 per well is achievable. Laboratory injectivity studies and three-way coupled modelling simulations established that three injection wells will be required to achieve the target injection rate. As planned injection wells are field centric and storage site area is large, DAS-VSP find limited coverage to monitor the CO2 plume front. Hence, surface seismic acquisition will be an integral component of full field monitoring and time-lapsed evaluations for integrated MMV planning to monitor CO2 plume migration. The integrated MMV planning is designed to ensure that injected CO2 in the reservoir is intact and safely stored for hundreds of years after injection. Field specific MMV technologies for CO2 plume migration with proactive approach were identified after exercising pre-defined screening criteria.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
Prasanna Chidambaram ◽  
Zoann Low ◽  
...  

Abstract The increasing atmospheric concentration of carbon dioxide (CO2), a greenhouse gas (GHG) is creating environmental imbalance and affecting the climate adversely due to growing industrialization. Global leaders are emphasizing on controlling the production of GHG. However, growing demands of natural gas, industry is embarking on the development of high CO2 contaminant gas fields to meet supply gap. Development and management of contaminated hydrocarbon gas fields add additional dimension of sequestration of CO2 after production and separation in project management. CO2 sequestration is a process for eternity with a possibility of zero-degree failure. Monitoring, measuring and verification (MMV) of injected CO2 volume in sequestration is critical component along with geological site selection, transportation, storage process. The present study discusses all the impacting parameters which makes whole process environment friendly, economically prudent and adhering to national and international regulations. The migration of injected CO2 plume in the reservoir is uncertain and its monitoring is equally challenging. The role of MMV planning is critical in development of high CO2 contaminant fields of offshore Sarawak. It substantiates that injected CO2 in the reservoir is intact and safely stored for hundreds of years after injection and possesses minimum to no risk to HS&E. The deployment of Multi-Fiber Optic Sensor System (M-FOSS) promises a cost-effective solution for monitoring the lateral & vertical migration of CO2 plume by acquiring 4D DAS-VSP (Distributed Acoustic Sensor – Vertical Seismic Profile) survey and for the well integrity by analyzing DAS/DTS (Distributed Temperature Sensor)/DPS (Distributed Pressure Sensor)/DSS (Distributed Strain Sensor) data. Simulation results and injectivity test at laboratory for in-situ CO2 injection has demonstrated the possibility of over 100MMscfd/well injection in aquifer to meet the total CO2 injection of 1.2Bscfd for full field development while maintaining the reservoir integrity. Uncertainty & risk analysis shows possible presence of seismically undistinguished fractures and minor faults, an early breakthrough of injected CO2 cannot be ruled out. The depleted reservoir storage study divulges the containment capacity of identified carbonate reservoirs as well as conformance of potential storage sites. The fault-seal analysis and reservoir integrity studies determine the robustness of the long-term security of the CO2 storage. Injectivity study demonstrates the optimum and maximum possible rates of CO2 injection into these depleted gas reservoirs. VSP simulation results show that a subsurface coverage of 3-4 km2 per well is achievable, which along with simulated CO2 plume extent help to determine the number of wells required to get maximum monitoring coverage for the MMV planning. The deployment of M-FOSS technology is novel and proactive approach to monitor the CO2 plume migration and well integrity. First ever development of MMV Planning for CO2 Sequestration in offshore Sarawak, Malaysia using novel and cutting-edge M-FOSS technology for proactive monitoring of CO2 plume migration and well integrity.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. B95-B107 ◽  
Author(s):  
Lisa A. N. Roach ◽  
Donald J. White ◽  
Brian Roberts ◽  
Doug Angus

The first post-[Formula: see text]-injection 3D time-lapse seismic survey was conducted at the Aquistore [Formula: see text] storage site in February 2016 using the same permanent array of buried geophones used for acquisition of three previous pre-[Formula: see text]-injection surveys from March 2012 to November 2013. By February 2016, 36 kilotons of [Formula: see text] have been injected within the reservoir between 3170 and 3370 m depth. We have developed time-lapse results from analysis of the first post-[Formula: see text]-injection data and three pre-[Formula: see text]-injection data sets. The objective of our analysis was to evaluate the ability of the permanent array to detect the injected [Formula: see text]. A “4D-friendly simultaneous” processing flow was applied to the data in an effort to maximize the repeatability between the pre- and post-[Formula: see text]-injection volumes while optimizing the final subsurface image including the reservoir. Excellent repeatability was achieved among all surveys with global normalized root-mean-square (Gnrms) values of 1.13–1.19 for the raw prestack data relative to the baseline data, which decreased during processing to Gnrms values of approximately 0.10 for the final crossequalized migrated data volumes. A zone of high normalized root-mean-square (nrms) values (0.11–0.25 as compared with background values of 0.05–0.10) is identified within the upper Deadwood unit of the storage reservoir, which likely corresponds to approximately 18 kilotons of [Formula: see text]. No significant nrms anomalies are observed within the other reservoir units due to a combination of reduced seismic sensitivity, higher background nrms values, and/or small quantities of [Formula: see text] residing within these zones.


Geophysics ◽  
2021 ◽  
pp. 1-9
Author(s):  
Balazs Nemeth ◽  
Christian Escalante

Two papers published in Geophysics use the normalized rms (NRMS) calculation in a sliding window to compare traces and to create a ‘difference nrms’ volume. The authors use the derived difference volume to show the presence of apparent time-lapse anomaly between two seismic surveys. In this discussion we point out that the used methodology does not allow a robust comparison of seismic traces. We recommend the use of simple amplitude difference calculation between volumes to show the presence of time-lapse anomalies, instead of the used methodology.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA1-WA13 ◽  
Author(s):  
Lisa A. N. Roach ◽  
Donald J. White ◽  
Brian Roberts

Two 3D time-lapse seismic surveys were acquired in 2012 and 2013 at the Aquistore [Formula: see text] storage site prior to the start of [Formula: see text] injection. Using these surveys, we determined the background time-lapse noise at the site and assessed the feasibility of using a sparse areal permanent receiver array as a monitoring tool. Applying a standard processing sequence to these data, we adequately imaged the reservoir at 3150–3350 m depth. Evaluation of the impact of each processing step on the repeatability revealed a general monotonic increase in similarity between the data sets as a function of processing. The prestack processing sequence reduced the normalized root mean squared difference (nrms) from 1.13 between the raw stacks to 0.13 after poststack time migration. The postmigration cross-equalization sequence further reduced the global nrms to 0.07. A simulation of the changes in seismic response due to a range of [Formula: see text] injection scenarios suggested that [Formula: see text] was detectable within the reservoir at the Aquistore site provided that zones of greater thickness than 6–13 m have reached [Formula: see text] saturations of greater than 5%.


2019 ◽  
Author(s):  
Don White ◽  
Kyle Harris ◽  
Lisa Roach ◽  
Saeid Cheraghi ◽  
Brian Roberts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document