Rock Percentage Estimation Using P-wave Tomography Method. A Case Study from Mochos, Heraklio, Greece

Author(s):  
N. Andronikidis ◽  
G. Kritikakis ◽  
C. Papathanasiou ◽  
A. Vafidis
2017 ◽  
Vol 107 (5) ◽  
pp. 2459-2466 ◽  
Author(s):  
Zhipeng Liu ◽  
Chao Song ◽  
Lingsen Meng ◽  
Zengxi Ge ◽  
Qinghua Huang ◽  
...  

2003 ◽  
Author(s):  
Petr Jílek ◽  
Brian Hornby ◽  
Amal Ray
Keyword(s):  
P Wave ◽  

1994 ◽  
Vol 100 (1) ◽  
pp. 4-23 ◽  
Author(s):  
Yoshio Fukao ◽  
Sigenori Maruyama ◽  
Masayuki Obayashi ◽  
Hiroshi Inoue
Keyword(s):  
P Wave ◽  

2020 ◽  
Author(s):  
Genti Toyokuni ◽  
Takaya Matsuno ◽  
Dapeng Zhao
Keyword(s):  
P Wave ◽  

Author(s):  
Marco D. Vásconez-Maza ◽  
Pedro Martínez-Pagán ◽  
Hasan Aktarakçi ◽  
María C. García-Nieto ◽  
Marcos A. Martínez-Segura

This communication reports an improvement of the quality of the electrical data obtained from the application of electrical resistivity tomography method on archaeological studies. The electrical contact between ground and electrode enhances significantly by using carbomer-based gel during the electrical resistivity tomography measurements. Not only does the gel promote the conservation of the building surface under investigation, but it also virtually eliminates the necessity of conventional spike electrodes, which in many archaeological studies are inadequate or not permitted. Results evidenced an enhancement in the quality of the electrical data obtained in the order of thousands of units compared with those without using the carbomer-based gel. The potential and capabilities of this affordable gel make it appropriate to be applied to other geoelectrical studies beyond archaeological investigations. Moreover, it might solve corrosion issues on conventional spike electrodes, and electrical multicore cables usually provoked for added saltwater attempting to improve the electrical contact.


2012 ◽  
Vol 33 (4) ◽  
pp. 389-396 ◽  
Author(s):  
Xiangchun Wang ◽  
Timothy A. Minshull ◽  
Changliang Xia ◽  
Xuewei Liu

2017 ◽  
Vol 22 (4) ◽  
pp. 427-434
Author(s):  
Julius K. von Ketelhodt ◽  
Thomas Fechner ◽  
Musa S. D. Manzi ◽  
Raymond J. Durrheim

An integrated P- and S-wave cross-borehole tomographic survey was performed in the city center of Kuala Lumpur, Malaysia, with the aim of exploring a karstic limestone area near an area that previously encountered cavities. Horizontally polarized shear waves were generated with two opposing, perpendicular strike directions and recorded with a multi-level, three-component receiver array. This allowed a high quality picking of the traveltimes, whereby the wave train reverses at the time of the S-wave arrival. In addition, high quality sparker generated P-waves were recorded. The P- and S-wave traveltimes were used to invert for two co-located tomograms. These tomograms enabled a better interpretation capability than a P- or S-wave tomogram on its own. The tomograms enabled the calculation of the elastic parameters, i.e., P- to S-wave velocity (Vp/Vs) ratio, Poisson's ratio, bulk modulus, Young's modulus and the shear modulus, on a 2D surface between the boreholes. This further aided the interpretation, as areas with limited traveltime accuracy and thus, an increase in tomographic error, could be easily identified, and the extent of a large cavity could be estimated. The interpretation of the tomograms was constrained by two additional boreholes, which provided more confidence on the delineation and location of cavities at depths. The survey shows the benefit of co-locating P- and S-wave tomography surveys.


Sign in / Sign up

Export Citation Format

Share Document