Reservoir Rock Classification by Comprehensive Petrophysical Data Integration – Acacus Formation, Jenein-Sud, Tunisia

Author(s):  
J. Steckhan
GeoArabia ◽  
2003 ◽  
Vol 8 (3) ◽  
pp. 435-462
Author(s):  
Dave L. Cantrell ◽  
Royal M. Hagerty

ABSTRACT An integrated petrographic and petrophysical study of Arab-D carbonates in Ghawar field has provided a new reservoir rock classification. This classification provides a simple but practical method of dividing the complex carbonate rocks of the Arab-D into meaningful reservoir rock types. Each rock type has a distinct pore network as defined by porosity-permeability relationships and capillarity expressed as pore-size distributions and J-function curves. The classification divides the Arab-D carbonates into seven limestone and four dolomite rock types. The amount of matrix (lime mud) and the pore types are the primary controlling parameters for the limestones. The dolomites are divided according to their crystal texture. The seven limestone reservoir rock types are based on the values of five petrographic parameters: (1) the amount of cement, (2) the amount of matrix (lime mud), (3) the grain sorting, (4) the dominant pore type, and (5) the size of the largest molds. The amount of matrix is the most important of these five parameters. In general terms, six of these seven types fall into two broad families, A and B, each of which can then be subdivided into three members (Types I, II, and III) according to their matrix content. The first family, A, is a fairly coarse-grained, poorly sorted rock with relatively large molds. The second family, B, is a generally fine to medium-grained, well sorted rock with few or small molds. The seventh rock type contains more than 10 percent cement which modifies the pore size distribution enough to warrant a separate reservoir rock type. Each of the reservoir rock types exhibits a distinctive pore-size distribution and, in turn, Leverett J-function or capillarity. The seven types are also characterized by distinctive porosity-permeability relationships. The four dolomite reservoir rock types are classified according to their dolomite crystal texture, although stratigraphic position and porosity can also be effective in their classification. The four textures are: fabric preserving (Vfp), sucrosic (Vs), intermediate (Vi) and mosaic (Vm). The Vfp dolomite is only found in Zone 1 of the Arab-D where it is the major dolomite type. Vs dolomite occurs in dolomites with more than 12 percent porosity, Vm less than 5 percent and Vi between 5 and 12 percent. Vfp dolomites have pore systems similar to their precursor limestone but the pore systems of the other dolomite types are unique. A significant finding of this evaluation is that the micropore system in all major limestone rock types in Zones 1 and 2 (upper Arab-D) is consistently an order of magnitude larger than for the same rock types in Zones 3 and 4 (lower Arab-D). The increase in size is believed to be a result of increased leaching in the upper Arab-D. This difference suggests that rocks of similar type from the upper and lower Arab-D will behave differently in terms of their fluid flow and saturation characteristics, and will have different ultimate recoveries.


Author(s):  
C.J. Stuart ◽  
B.E. Viani ◽  
J. Walker ◽  
T.H. Levesque

Many techniques of imaging used to characterize petroleum reservoir rocks are applied to dehydrated specimens. In order to directly study behavior of fines in reservoir rock at conditions similar to those found in-situ these materials need to be characterized in a fluid saturated state.Standard light microscopy can be used on wet specimens but depth of field and focus cannot be obtained; by using the Tandem Scanning Confocal Microscope (TSM) images can be produced from thin focused layers with high contrast and resolution. Optical sectioning and extended focus images are then produced with the microscope. The TSM uses reflected light, bulk specimens, and wet samples as opposed to thin section analysis used in standard light microscopy. The TSM also has additional advantages: the high scan speed, the ability to use a variety of light sources to produce real color images, and the simple, small size scanning system. The TSM has frame rates in excess of normal TV rates with many more lines of resolution. This is accomplished by incorporating a method of parallel image scanning and detection. The parallel scanning in the TSM is accomplished by means of multiple apertures in a disk which is positioned in the intermediate image plane of the objective lens. Thousands of apertures are distributed in an annulus, so that as the disk is spun, the specimen is illuminated simultaneously by a large number of scanning beams with uniform illumination. The high frame speeds greatly simplify the task of image recording since any of the normally used devices such as photographic cameras, normal or low light TV cameras, VCR or optical disks can be used without modification. Any frame store device compatible with a standard TV camera may be used to digitize TSM images.


Author(s):  
O. M. Makarova ◽  
N. I. Korobova ◽  
A. G. Kalmykov ◽  
G. A. Kalmykov

According to lithological and petrophysical data the core of the Bazhenov Formation, discovered in the central part of the Tundrin Basin, the structure of the section was characterized , productive oil intervals were identified, in which the collectors of pore and fissure-pore types are developed.


Sign in / Sign up

Export Citation Format

Share Document