In-situ geophysical and hydrochemical monitoring of landslide dynamics (Pégairolles, Languedoc, France)

Author(s):  
P.A. Pezard ◽  
S. Gautier ◽  
N. Denchik ◽  
M. Geeraert ◽  
G. Henry
2020 ◽  
Author(s):  
Mathilde Desrues ◽  
Jean-Philippe Malet ◽  
Ombeline Brenguier ◽  
Aurore Carrier ◽  
Lionel Lorier

<p>Several geodetic methods can be combined to better understand landslide dynamics and behavior. The obtained deformation/displacement fields can be analyzed to inverse the geometry of the moving mass and the mechanical behavior of the slope (kinematic regime, rheological properties of the media), and sometimes anticipate the time of failure. Among them, dense in-situ measurements (total station measurements, extensometer data and GNSS surveys) allow reaching accuracy close to the centimeter. These techniques can be combined to dense time series of passive terrestrial imagery in order to obtain distributed information. Actually, more and more passive optical sensors are used to provide both qualitative information (detection of surface change) and quantitative information using either a single camera (quantification of displacement by correlation techniques) or stereo-views (creation of Digital Surface Models, DSM).</p><p> </p><p>In this study, we analyze a unique dataset of the Cliets rockslide event that occurred on 9 February 2019. The pre-failure and failure stages were documented using the above mentioned methods. The performance of the methods are evaluated in terms of their possible contribution to a monitoring survey.</p><p> </p><p><span>The Cliets landslide is located in the French Alps (Savoie) and is affecting the high traffic road of Gorges de l’Arly. Located upstream of a tunnel, the unstable slope was instrumented by the SAGE Society during the crisis in the period July–February 2019. About 8000 m</span><sup><span>3</span></sup><span> collapsed closing the tunnel access for one year. Topographic measurements of a series of 41 benchmarks by automated total station were used to determined the time of rupture and the landslide mechanical behavior (tertiary creep vs stable regime). Additionally, a fixed CANON EOS 2000D with a lens with a focal length of 24 mm, was installed in front of the landslide. Images were acquired hourly and the time series was processed using the TSM processing toolbox (Desrues et al., 2019). Displacement fields were generated over time and compared to the topographic measurements. Photogrammetric surveys were carried out to generate several DSMs before and after the crisis. It allowed to estimate the volume of the collapsed masses. Finally, geophysical surveys were included in the study to determine the thickness of the potential unstable layer. </span></p><p>The results allow highlighting (1) different kind of behaviors which are identified and explained by a simple physical models, (2) the volumes of the displaced masses, and (3) the absence of a direct relation of the failure with the meterological forcing factors.</p><p> </p><p><span><strong>Acknowledgments</strong></span><span>: These works are part of a CIFRE / ANRT agreement between IPGS/CNRS UMR7516 and the SAGE Society.</span></p>


2019 ◽  
Vol 254 ◽  
pp. 102-112 ◽  
Author(s):  
Nataliya Denchik ◽  
Stéphanie Gautier ◽  
Margaux Dupuy ◽  
Christelle Batiot-Guilhe ◽  
Michel Lopez ◽  
...  

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document