Landslide dynamics inferred from in-situ measurements and time series of terrestrial imagery: the Cliets rockslide (Savoie, French Alps)

Author(s):  
Mathilde Desrues ◽  
Jean-Philippe Malet ◽  
Ombeline Brenguier ◽  
Aurore Carrier ◽  
Lionel Lorier

<p>Several geodetic methods can be combined to better understand landslide dynamics and behavior. The obtained deformation/displacement fields can be analyzed to inverse the geometry of the moving mass and the mechanical behavior of the slope (kinematic regime, rheological properties of the media), and sometimes anticipate the time of failure. Among them, dense in-situ measurements (total station measurements, extensometer data and GNSS surveys) allow reaching accuracy close to the centimeter. These techniques can be combined to dense time series of passive terrestrial imagery in order to obtain distributed information. Actually, more and more passive optical sensors are used to provide both qualitative information (detection of surface change) and quantitative information using either a single camera (quantification of displacement by correlation techniques) or stereo-views (creation of Digital Surface Models, DSM).</p><p> </p><p>In this study, we analyze a unique dataset of the Cliets rockslide event that occurred on 9 February 2019. The pre-failure and failure stages were documented using the above mentioned methods. The performance of the methods are evaluated in terms of their possible contribution to a monitoring survey.</p><p> </p><p><span>The Cliets landslide is located in the French Alps (Savoie) and is affecting the high traffic road of Gorges de l’Arly. Located upstream of a tunnel, the unstable slope was instrumented by the SAGE Society during the crisis in the period July–February 2019. About 8000 m</span><sup><span>3</span></sup><span> collapsed closing the tunnel access for one year. Topographic measurements of a series of 41 benchmarks by automated total station were used to determined the time of rupture and the landslide mechanical behavior (tertiary creep vs stable regime). Additionally, a fixed CANON EOS 2000D with a lens with a focal length of 24 mm, was installed in front of the landslide. Images were acquired hourly and the time series was processed using the TSM processing toolbox (Desrues et al., 2019). Displacement fields were generated over time and compared to the topographic measurements. Photogrammetric surveys were carried out to generate several DSMs before and after the crisis. It allowed to estimate the volume of the collapsed masses. Finally, geophysical surveys were included in the study to determine the thickness of the potential unstable layer. </span></p><p>The results allow highlighting (1) different kind of behaviors which are identified and explained by a simple physical models, (2) the volumes of the displaced masses, and (3) the absence of a direct relation of the failure with the meterological forcing factors.</p><p> </p><p><span><strong>Acknowledgments</strong></span><span>: These works are part of a CIFRE / ANRT agreement between IPGS/CNRS UMR7516 and the SAGE Society.</span></p>

2018 ◽  
Vol 10 (9) ◽  
pp. 1360 ◽  
Author(s):  
Tazio Strozzi ◽  
Sofia Antonova ◽  
Frank Günther ◽  
Eva Mätzler ◽  
Gonçalo Vieira ◽  
...  

Low-land permafrost areas are subject to intense freeze-thaw cycles and characterized by remarkable surface displacement. We used Sentinel-1 SAR interferometry (InSAR) in order to analyse the summer surface displacement over four spots in the Arctic and Antarctica since 2015. Choosing floodplain or outcrop areas as the reference for the InSAR relative deformation measurements, we found maximum subsidence of about 3 to 10 cm during the thawing season with generally high spatial variability. Sentinel-1 time-series of interferograms with 6–12 day time intervals highlight that subsidence is often occurring rather quickly within roughly one month in early summer. Intercomparison of summer subsidence from Sentinel-1 in 2017 with TerraSAR-X in 2013 over part of the Lena River Delta (Russia) shows a high spatial agreement between both SAR systems. A comparison with in-situ measurements for the summer of 2014 over the Lena River Delta indicates a pronounced downward movement of several centimetres in both cases but does not reveal a spatial correspondence between InSAR and local in-situ measurements. For the reconstruction of longer time-series of deformation, yearly Sentinel-1 interferograms from the end of the summer were considered. However, in order to infer an effective subsidence of the surface through melting of excess ice layers over multi-annual scales with Sentinel-1, a longer observation time period is necessary.


2021 ◽  
Author(s):  
Rémi Madelon ◽  
Nemesio Rodriguez-Fernandez ◽  
Robin Van Der Shalie ◽  
Yann Kerr ◽  
Tracy Scalon ◽  
...  

<p>Merging data from different instruments is required to construct long time data records of soil moisture (SM). This is the goal of projects such as the ESA Climate Change Initiative (CCI) for SM (Gruber et al., 2019), which uses both active and passive microwave sensors. Currently, the GLDAS v2.1 model is used as reference to re-scale active and passive time series by matching their Cumulative Density Function (CDF) to that of the model. Removing the dependency on models is important, in particular for data assimilation applications into hydrological or climate models, and it has been proposed (Van der Schalie et al., 2018) to use L-band data from one of the two instruments specifically designed to measure SM, ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture Active Passive (SMAP) satellites, as reference to re-scale other time series.<br>To investigate this approach, AMSR-2 SM time series obtained from C1-, C2- and X-band observations using LPRM (Land Parameter Retrieval Model) were re-scaled by CDF-matching (Brocca et al., 2011) using different SMAP and SMOS official (SMAP L2 V005, SMOS L3 V300, SMOS NRT V100&V200) and research (SMOS IC V103) SM products as well as the SMAP and SMOS LPRM v6 SM data used by the ESA CCI. The time series re-scaled using L-band remote sensing data were compared to those re-scaled using GLDAS and were evaluated against in situ measurements at several hundred sites retrieved from the International Soil Moisture Network (Dorigo et al., 2011). The results were analyzed as a function of the land cover class and the Koppen-Geiger climate classification.<br>Overall, AMSR-2 time series re-scaled using SMAP L2, SMAP LPRM and SMOS IC data sets as reference gave the best correlations with respect to in situ measurements, similar to those obtained by the time series re-scaled using GLDAS and slightly better than those of the original AMSR-2 time series. These results imply that different SMAP and SMOS products could actually be used to replace GLDAS as reference for the re-scaling of other sensors time series within the ESA CCI. However, one must bear in mind that this study is limited to the re-scaling of AMSR-2 data at a few hundred sites.<br>For a more detailed assessment of the L-band data set to be used for a global re-scaling, it is necessary to investigate other effects such as the spatial coverage or the time series length. SMAP spatial coverage is better than that of SMOS in regions affected by radio frequency interference. In contrast, the length of SMAP time series can be too short to capture the long term SM variability for climate applications in some regions. The CDF of SMOS time series computed from the date of SMAP launch is significantly different to those of the full length SMOS time series in some regions of the Globe. Possible ways of using a coherent SMAP/SMOS L-band data set will be discussed.</p>


2021 ◽  
Author(s):  
Duc Tran ◽  
Matthias Jacquet ◽  
Stuart Pearson ◽  
Romaric Verney

<p>Long term and high-frequency monitoring of water quality, particularly the suspended particulate matter (SPM) concentration are crucial to decipher the health and sustainable development of marine ecosystems. However, in-situ measurements based on indirect optical or acoustic techniques are often associated with large uncertainties due to the dynamics of natural SPM, especially throughout the land-sea continuum. Therefore, this study aims to improve the accuracy of long term in-situ measurements by quantitatively elucidating the physical mechanisms by which sand and fine sediment respond to multi-wavelength optical and multi-frequency acoustic signals. We <strong>hypothesize</strong> that whilst fine sediment is very sensitive to optical signals, the coarser particles are more sensitive to acoustic signals, and vice versa. We further <strong>hypothesize</strong> that the SPM compositions and variability can be differentiated and derived based on such sensitivities and differences in behaviors of sand and fine sediment under different types of signals, i.e., optical and acoustic. </p><p>Before testing the hypotheses, a novel laboratory device that is capable of 1) generating homogeneous suspended concentration and 2) providing sufficient space for multiple sensors to operate simultaneously must be developed. The new device, DEXMES (dispositive experimental de quantification des matières en suspension), primarily consists of two main components. The upper part is a cylindrical tank with an inner diameter of 0.96 m and 1.4 m high. To break up the large vortexes and mitigate the vortex-induced bubbles (e.g., generated by the impeller), four baffles with dimensions of 0.09 x 1.31 m are evenly attached to the inner side of the tank. The bottom part of the DEXMES device is a convex, elliptical Plexiglas bed. Turbulent flow is generated by an impeller with a diameter of 0.36 m placed approximately 1 m below the water surface. The speed of the impeller, ranging from 0 to 235 rpm, is regulated by a controller box.</p><p>To test the hypotheses, 30 experiments, consisting of 6 concentrations and 5 mixture ratios (by mass) of Bentonite and fine sand (d<sub>50</sub> = 100 µm), i.e., 100/0, 75/25, 50/50, 25/75, and 0/100, were thoroughly investigated using three acoustic sensors (ADV, AQUAscat, LISST-ABS) and three optical sensors (Wetlabs, HydroScat, LISST-100X). On average, each data point is the averaged value of 10 min of recording at 1 or 32 Hz. First, results show logarithmic/linear relationships between concentration and acoustic/optical signals respectively for a given bentonite/sand. Second, the slope of this relation is a function of the Bentonite/sand ratio. Third, the results confirm the hypotheses that coarser particles are more sensitive to acoustic signals and fine sediment is more sensitive to optical signals. Simple regression models were developed for different pairs of acoustic and optical sensors based on their relative sensitivity to SPM characteristics. The correlation coefficient, bias, and RMSE between observed and predicted concentrations then were examined. The results also show that it is possible to use a combination of one acoustic and one optical sensor to infer the concentration and the ratio of fine/coarse sediment in suspension with minimum use of water samples calibration.</p>


2021 ◽  
Author(s):  
Anna Derkacheva ◽  
Fabien Gillet-Chaulet ◽  
Jeremie Mouginot

<p>Greenland’s future response to climate change will be determined partly by various phenomena controlling ice flow. For the land-terminating sectors, the water lubricating the glacier's base is considered as a major control on the ice motion. For instance, the seasonal modulations of water input induced by summer melt can cause glacier speed-up up to +200-300% compared to the winter mean. Thus, a comprehensive understanding of variations in the basal conditions, which are at the origin of the glacier flow fluctuations, plays a key role for the climate projections.</p><p>While the in-situ measurements stay a local and hard approach to investigate the basal conditions, ice flow modeling offers the possibility to invert for them over the large area based on observations of surface glacier speed and topography. During the last decade, the number of available satellite observations has increased significantly, allowing for far more frequent measurements of the glacier speed and precise reconstruction of the seasonal fluctuations. Here, we investigate the possibility of applying this satellite-derived time-series of surface ice velocity to reconstruct the annual behavior of the basal conditions with 2 weeks temporal resolution using an ice flow model.</p><p>The area of this study is Russell glacier located on the southwest coast of Greenland. A time series of surface velocity dataset was created by merging measurements from Sentinel-1&2 and Landsat-8, covering an area up to 100 km inland with 150 m/pix spatial resolution and 2-weeks temporal resolution (Derkacheva et al. 2020). The 3D Full-Stokes ice flow model Elmer/Ice is used to invert for the effective basal friction coefficient for each time step.  Usage of a friction law that has been derived for hard beds (Gagliardini et al., 2007) allows to constrain the variation of the basal effective pressure. Overall, the results from the model inversions give access to the evolution of the basal ice speed, friction, effective and water pressure, floatation fraction throughout a complete year. The results are compared with in-situ measurements in terms of absolute values and show a good agreement. The impact of the flow model setup, regularization, assumptions for the ice rheology, and the impact of noise in the speed data are also examined and compared with in-situ measurements.</p>


2017 ◽  
Author(s):  
Lucas Davaze ◽  
Antoine Rabatel ◽  
Yves Arnaud ◽  
Pascal Sirguey ◽  
Delphine Six ◽  
...  

Abstract. Less than 0.25 % of the 250,000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000–2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal (threshold from 0.53 to 0.76). These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadows correction algorithm, although inter-annual comparisons are not affected by systematic errors.


Sign in / Sign up

Export Citation Format

Share Document