A Comparison between Time-Domain and Frequency-Domain Full Waveform Inversion

Author(s):  
S.M.A. Shoja ◽  
S. Abolhassani ◽  
N. Amini
Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. R41-R53 ◽  
Author(s):  
Kun Xu ◽  
George A. McMechan

To decouple the parameters in elastic full-waveform inversion (FWI), we evaluated a new multistep-length gradient approach to assign individual weights separately for each parameter gradient and search for an optimal step length along the composite gradient direction. To perform wavefield extrapolations for the inversion, we used parallelized high-precision finite-element (FE) modeling in the time domain. The inversion was implemented in the frequency domain; the data were obtained at every subsurface grid point using the discrete Fourier transform at each time-domain extrapolation step. We also used frequency selection to reduce cycle skipping, time windowing to remove the artifacts associated with different source spatial patterns between the test and predicted data, and source wavelet estimation at the receivers over the full frequency spectrum by using a fast Fourier transform. In the inversion, the velocity and density reconstructions behaved differently; as a low-wavenumber tomography (for velocities) and as a high-wavenumber migration (for density). Because velocities and density were coupled to some extent, variations were usually underestimated (smoothed) for [Formula: see text] and [Formula: see text] and correspondingly overestimated (sharpened) for [Formula: see text]. The impedances [Formula: see text] and [Formula: see text] from the products of the velocity and density results compensated for the under- or overestimations of their variations, so the recovered impedances were closer to the correct ones than [Formula: see text], [Formula: see text], and [Formula: see text] were separately. Simultaneous reconstruction of [Formula: see text], [Formula: see text], and [Formula: see text] was robust on the FE and finite-difference synthetic data (without surface waves) from the elastic Marmousi-2 model; satisfactory results are obtained for [Formula: see text], [Formula: see text], [Formula: see text], and the recovered [Formula: see text] and [Formula: see text] from their products. Convergence is fast, needing only a few tens of iterations, rather than a few hundreds of iterations that are typical in most other elastic FWI algorithms.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


2017 ◽  
Vol 209 (3) ◽  
pp. 1718-1734 ◽  
Author(s):  
Gabriel Fabien-Ouellet ◽  
Erwan Gloaguen ◽  
Bernard Giroux

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. R249-R257 ◽  
Author(s):  
Maokun Li ◽  
James Rickett ◽  
Aria Abubakar

We found a data calibration scheme for frequency-domain full-waveform inversion (FWI). The scheme is based on the variable projection technique. With this scheme, the FWI algorithm can incorporate the data calibration procedure into the inversion process without introducing additional unknown parameters. The calibration variable for each frequency is computed using a minimum norm solution between the measured and simulated data. This process is directly included in the data misfit cost function. Therefore, the inversion algorithm becomes source independent. Moreover, because all the data points are considered in the calibration process, this scheme increases the robustness of the algorithm. Numerical tests determined that the FWI algorithm can reconstruct velocity distributions accurately without the source waveform information.


2015 ◽  
Author(s):  
Changlu Sun* ◽  
Guangzhi Zhang ◽  
Xinpeng Pan ◽  
Xingyao Yin

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE101-VE117 ◽  
Author(s):  
Hafedh Ben-Hadj-Ali ◽  
Stéphane Operto ◽  
Jean Virieux

We assessed 3D frequency-domain (FD) acoustic full-waveform inversion (FWI) data as a tool to develop high-resolution velocity models from low-frequency global-offset data. The inverse problem was posed as a classic least-squares optimization problem solved with a steepest-descent method. Inversion was applied to a few discrete frequencies, allowing management of a limited subset of the 3D data volume. The forward problem was solved with a finite-difference frequency-domain method based on a massively parallel direct solver, allowing efficient multiple-shot simulations. The inversion code was fully parallelized for distributed-memory platforms, taking advantage of a domain decomposition of the modeled wavefields performed by the direct solver. After validation on simple synthetic tests, FWI was applied to two targets (channel and thrust system) of the 3D SEG/EAGE overthrust model, corresponding to 3D domains of [Formula: see text] and [Formula: see text], respectively. The maximum inverted frequencies are 15 and [Formula: see text] for the two applications. A maximum of 30 dual-core biprocessor nodes with [Formula: see text] of shared memory per node were used for the second target. The main structures were imaged successfully at a resolution scale consistent with the inverted frequencies. Our study confirms the feasibility of 3D frequency-domain FWI of global-offset data on large distributed-memory platforms to develop high-resolution velocity models. These high-velocity models may provide accurate macromodels for wave-equation prestack depth migration.


Sign in / Sign up

Export Citation Format

Share Document