Alternative Surface Wave Analysis Method for 2D Near-Surface maging Using Particle Swarm Optimization

Author(s):  
D. Pageot ◽  
D. Leparoux ◽  
Y. Capdeville ◽  
P. Côte
Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. R19-R32 ◽  
Author(s):  
Jens Tronicke ◽  
Hendrik Paasche ◽  
Urs Böniger

Particle swarm optimization (PSO) is a relatively new global optimization approach inspired by the social behavior of bird flocking and fish schooling. Although this approach has proven to provide excellent convergence rates in different optimization problems, it has seldom been applied to inverse geophysical problems. Until today, published geophysical applications mainly focus on finding an optimum solution for simple, 1D inverse problems. We have applied PSO-based optimization strategies to reconstruct 2D P-wave velocity fields from crosshole traveltime data sets. Our inversion strategy also includes generating and analyzing a representative ensemble of acceptable models, which allows us to appraise uncertainty and nonuniqueness issues. The potential of our strategy was tested on field data collected at a well-constrained test site in Horstwalde, Germany. At this field site, the shallow subsurface mainly consists of sand- and gravel-dominated glaciofluvial sediments, which, as known from several boreholes and other geophysical experiments, exhibit some well-defined layering at the scale of our crosshole seismic data. Thus, we have implemented a flexible, layer-based model parameterization, which, compared with standard cell-based parameterizations, allows for significantly reducing the number of unknown model parameters and for efficiently implementing a priori model constraints. Comparing the 2D velocity fields resulting from our PSO strategy to independent borehole and direct-push data illustrated the benefits of choosing an efficient global optimization approach. These include a straightforward and understandable appraisal of nonuniqueness issues as well as the possibility of an improved and also more objective interpretation.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document