Evaluation of Registration Capabilities of Microseismic Monitoring Network of Hydraulic Fracturing in Various Frequency Ranges

Author(s):  
A. Muriskin ◽  
D. Shulakov
2020 ◽  
Vol 54 ◽  
pp. 129-136
Author(s):  
Camilla Rossi ◽  
Francesco Grigoli ◽  
Simone Cesca ◽  
Sebastian Heimann ◽  
Paolo Gasperini ◽  
...  

Abstract. Geothermal systems in the Hengill volcanic area, SW Iceland, started to be exploited for electrical power and heat production since the late 1960s. Today the two largest operating geothermal power plants are located at Nesjavellir and Hellisheiði. This area is a complex tectonic and geothermal site, located at the triple junction between the Reykjanes Peninsula (RP), the Western Volcanic Zone (WVZ), and the South Iceland Seismic Zone (SISZ). The region is seismically highly active with several thousand earthquakes located yearly. The origin of such earthquakes may be either natural or anthropogenic. The analysis of microseismicity can provide useful information on natural active processes in tectonic, geothermal and volcanic environments as well as on physical mechanisms governing induced events. Here, we investigate the microseismicity occurring in Hengill area, using a very dense broadband seismic monitoring network deployed in Hellisheiði since November 2018, and apply sophisticated full-waveform based method for detection and location. Improved locations and first characterization indicate that it is possible to identify different types of microseismic clusters, which are associated with either production/injection or the tectonic setting of the geothermal area.


2018 ◽  
Vol 6 (3) ◽  
pp. SH39-SH48 ◽  
Author(s):  
Wojciech Gajek ◽  
Jacek Trojanowski ◽  
Michał Malinowski ◽  
Marek Jarosiński ◽  
Marko Riedel

A precise velocity model is necessary to obtain reliable locations of microseismic events, which provide information about the effectiveness of the hydraulic stimulation. Seismic anisotropy plays an important role in microseismic event location by imposing the dependency between wave velocities and its propagation direction. Building an anisotropic velocity model that accounts for that effect allows for more accurate location of microseismic events. We have used downhole microseismic records from a pilot hydraulic fracturing experiment in Lower-Paleozoic shale gas play in the Baltic Basin, Northern Poland, to obtain accurate microseismic events locations. We have developed a workflow for a vertical transverse isotropy velocity model construction when facing a challenging absence of horizontally polarized S-waves in perforation shot data, which carry information about Thomsen’s [Formula: see text] parameter and provide valuable constraints for locating microseismic events. We extract effective [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] for each layer from the P- and SV-wave arrivals of perforation shots, whereas the unresolved [Formula: see text] is retrieved afterward from the SH-SV-wave delay time of selected microseismic events. An inverted velocity model provides more reliable location of microseismic events, which then becomes an essential input for evaluating the hydraulic stimulation job effectiveness in the geomechanical context. We evaluate the influence of the preexisting fracture sets and obliquity between the borehole trajectory and principal horizontal stress direction on the hydraulic treatment performance. The fracturing fluid migrates to previously fractured zones, while the growth of the microseismic volume in consecutive stages is caused by increased penetration of the above-lying lithologic formations.


Author(s):  
V. Oropeza Bacci ◽  
S. O'Brien ◽  
M. Anderson ◽  
K. Dahlby ◽  
N. Henderson

2016 ◽  
Author(s):  
Andreas Briner ◽  
Sergey Nadezdhin ◽  
Mahmoud El Gihani ◽  
Taimur Al-Wadhahi ◽  
Yasin Charles El-Taha ◽  
...  

2019 ◽  
Vol 7 (3) ◽  
pp. 986-999 ◽  
Author(s):  
Zhizhong Jiang ◽  
Quangui Li ◽  
Qianting Hu ◽  
Jiufu Chen ◽  
Xuelong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document