Fault Interpretation in 3D Seismic Data and Their Verification with Horizontal Wells Data on the Example of the Caspian Sea Oil-Fields

Author(s):  
A.V. Gorban ◽  
I.N. Kerusov
Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. B77-B86 ◽  
Author(s):  
Zhiguo Wang ◽  
Jinghuai Gao ◽  
Xiaolan Lei ◽  
Xiaojie Cui ◽  
Daxing Wang

The Lower Permian Xiashihezi Formation in the Ordos Basin, China, is a quartz-sandstone reservoir with low porosity and low permeability. We have acquired 3D seismic data and well data from 18 vertical and four horizontal wells to indicate the potential of seismic attribute analyses in locating seismic sweet spots for lateral placement of horizontal wells. Using the analytic wavelet transform with a Morse wavelet, the integration of high tuning spectral components, high sweetness and high spectral attenuation helped us to estimate the distribution of gas-bearing tight sands in the Xiashihezi Formation. Our results revealed that the principal target of horizontal drilling and production was gas-bearing massive point bars in the braided river delta setting of the Ordos Basin. The integrated workflow of the seismic attribute analysis contributes to the optimal horizontal well planning by mining and exposing critical geological information of a tight gas sand reservoir from within 3D seismic data.


2019 ◽  
Vol 7 (3) ◽  
pp. SE251-SE267 ◽  
Author(s):  
Haibin Di ◽  
Mohammod Amir Shafiq ◽  
Zhen Wang ◽  
Ghassan AlRegib

Fault interpretation is one of the routine processes used for subsurface structure mapping and reservoir characterization from 3D seismic data. Various techniques have been developed for computer-aided fault imaging in the past few decades; for example, the conventional methods of edge detection, curvature analysis, red-green-blue rendering, and the popular machine-learning methods such as the support vector machine (SVM), the multilayer perceptron (MLP), and the convolutional neural network (CNN). However, most of the conventional methods are performed at the sample level with the local reflection pattern ignored and are correspondingly sensitive to the coherent noises/processing artifacts present in seismic signals. The CNN has proven its efficiency in utilizing such local seismic patterns to assist seismic fault interpretation, but it is quite computationally intensive and often demands higher hardware configuration (e.g., graphics processing unit). We have developed an innovative scheme for improving seismic fault detection by integrating the computationally efficient SVM/MLP classification algorithms with local seismic attribute patterns, here denoted as the super-attribute-based classification. Its added values are verified through applications to the 3D seismic data set over the Great South Basin (GSB) in New Zealand, where the subsurface structure is dominated by polygonal faults. A good match is observed between the original seismic images and the detected lineaments, and the generated fault volume is tested usable to the existing advanced fault interpretation tools/modules, such as seeded picking and automatic extraction. It is concluded that the improved performance of our scheme results from its two components. First, the SVM/MLP classifier is computationally efficient in parsing as many seismic attributes as specified by interpreters and maximizing the contributions from each attribute, which helps minimize the negative effects from using a less useful or “wrong” attribute. Second, the use of super attributes incorporates local seismic patterns into training a fault classifier, which helps exclude the random noises and/or artifacts of distinct reflection patterns.


1994 ◽  
Vol 41 ◽  
pp. 138-144
Author(s):  
M. W. Jeppesen

The reservoir position of horizontal wells drilled in low permeability chalk reservoirs is of vital importance for the well performance. Accurate placement of horizontal wells drilled in the low permeability chalk fields in the Danish North Sea is being achieved by rigorous evaluation of geological information acquired during drilling. The tools which are being utilized for geological steering of horizontal wells comprise: High resolution biostratigraphy, Logging While Drilling, shows evaluation and analysis of 3D seismic data. Examples from the Dan, Kraka, Skjold and Tyra fields illustrate the current applications of geological steering in chalk reservoirs.


2013 ◽  
Vol 31 (1) ◽  
pp. 109
Author(s):  
Arthur Victor Medeiros Francelino ◽  
Alex Francisco Antunes

The 3D seismic data allow that mature oil fields be reevaluated in order to improve the characterization of faults that affect the flow of hydrocarbons. The use of seismic attributes and filtering allows an improvement in the identification and enhancement of these fractures on seismic data. In this study, we used two different filters: the dip-steered median filter to remove random noise and increase the lateral continuity of reflections, and the fault-enhancement filter used to enhance the discontinuities of the reflections. After filtering, similarity and curvature attributes were applied in order to identify the distribution of fractures along the data. Theuse of these attributes and filters contributed greatly to the identification and enhancement of the continuity of the fractures. RESUMO: Com o advento da sísmica 3D, campos de petróleo maduros podem ser reavaliados melhorando a caracterização das falhas que influenciam o fluxo de hidrocarbonetos. A utilização de filtragens e atributos sísmicos possibilita uma melhora na identificação e no realce dessas fraturas no dado sísmico. No presente trabalho foram utilizados dois tipos de filtros, sendo o dip-steered median filter, com a finalidade de retirar os ruídos aleatórios e aumentar a continuidade lateral das reflexões, e o fault-enhancement filter para realçar as descontinuidades das reflexões. Após a etapa de filtragem foram aplicados os atributos de similaridade e curvatura, para se identificar a distribuição das falhas. O uso dos atributos e filtragens colaborou fortemente para a identificação e o realce da continuidade das fraturas. Palavras-chave: reservatório fraturado; interpretação sísmica e atributos sísmicos


Sign in / Sign up

Export Citation Format

Share Document