FWI with reconstructed low frequency data: A label-free physics-integrated deep learning approach

Author(s):  
W. Hu ◽  
Y. Jin ◽  
X. Wu ◽  
J. Chen
2021 ◽  
Vol 13 (10) ◽  
pp. 265
Author(s):  
Jie Chen ◽  
Bing Han ◽  
Xufeng Ma ◽  
Jian Zhang

Underwater target recognition is an important supporting technology for the development of marine resources, which is mainly limited by the purity of feature extraction and the universality of recognition schemes. The low-frequency analysis and recording (LOFAR) spectrum is one of the key features of the underwater target, which can be used for feature extraction. However, the complex underwater environment noise and the extremely low signal-to-noise ratio of the target signal lead to breakpoints in the LOFAR spectrum, which seriously hinders the underwater target recognition. To overcome this issue and to further improve the recognition performance, we adopted a deep-learning approach for underwater target recognition, and a novel LOFAR spectrum enhancement (LSE)-based underwater target-recognition scheme was proposed, which consists of preprocessing, offline training, and online testing. In preprocessing, we specifically design a LOFAR spectrum enhancement based on multi-step decision algorithm to recover the breakpoints in LOFAR spectrum. In offline training, the enhanced LOFAR spectrum is adopted as the input of convolutional neural network (CNN) and a LOFAR-based CNN (LOFAR-CNN) for online recognition is developed. Taking advantage of the powerful capability of CNN in feature extraction, the recognition accuracy can be further improved by the proposed LOFAR-CNN. Finally, extensive simulation results demonstrate that the LOFAR-CNN network can achieve a recognition accuracy of 95.22%, which outperforms the state-of-the-art methods.


2021 ◽  
Vol 1 (6) ◽  
pp. 100094
Author(s):  
Corin F. Otesteanu ◽  
Martina Ugrinic ◽  
Gregor Holzner ◽  
Yun-Tsan Chang ◽  
Christina Fassnacht ◽  
...  

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. A37-A43
Author(s):  
Jinwei Fang ◽  
Hui Zhou ◽  
Yunyue Elita Li ◽  
Qingchen Zhang ◽  
Lingqian Wang ◽  
...  

The lack of low-frequency signals in seismic data makes the full-waveform inversion (FWI) procedure easily fall into local minima leading to unreliable results. To reconstruct the missing low-frequency signals more accurately and effectively, we have developed a data-driven low-frequency recovery method based on deep learning from high-frequency signals. In our method, we develop the idea of using a basic data patch of seismic data to build a local data-driven mapping in low-frequency recovery. Energy balancing and data patches are used to prepare high- and low-frequency data for training a convolutional neural network (CNN) to establish the relationship between the high- and low-frequency data pairs. The trained CNN then can be used to predict low-frequency data from high-frequency data. Our CNN was trained on the Marmousi model and tested on the overthrust model, as well as field data. The synthetic experimental results reveal that the predicted low-frequency data match the true low-frequency data very well in the time and frequency domains, and the field results show the successfully extended low-frequency spectra. Furthermore, two FWI tests using the predicted data demonstrate that our approach can reliably recover the low-frequency data.


2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


Sign in / Sign up

Export Citation Format

Share Document