Effect of Simultaneous and Facies-based inversions on Geomechanical properties estimations in an Unconventional Reservoir

Author(s):  
J. Aristimuno ◽  
J. Fernandez-Concheso ◽  
Y. Del Moro
2015 ◽  
Author(s):  
Omprakash Pal ◽  
Bilal Zoghbi ◽  
Waseem Abdul Razzaq

Abstract Unconventional reservoir exploration and development activities in the Middle East have increased and are expected to continue to do so. National oil companies in the Middle East have a strategy for maximizing oil exports as well as use of natural gas. This has placed emphasis on use of advanced technology to extend the lives of conventional reservoirs and more activities in terms of “unconventional gas and oil.” Understanding unconventional environments, such as shale reservoirs, requires unique processes and technologies based on reservoir properties for optimum reservoir production and well life. The objective of this study is to provide the systematic work flow to characterize unconventional reservoir formation. This paper discusses detailed laboratory testing to determine geochemical, rock mechanical, and formation fluid properties for reservoir development. Each test is described in addition to its importance to the reservoir study. Geochemical properties, such as total organic carbon (TOC) content to evaluate potential candidates for hydrocarbon, mineralogy to determine the formation type and clay content, and kerogen typing for reservoir maturity. Formation fluid sensitivity, such as acid solubility testing of the formation, capillary suction time testing, and Brinell hardness testing, are characterized to better understand the interaction of various fluids with the formation to help optimize well development. An additional parameter in unconventional reservoirs is to plan ahead when implementing the proper fracturing stimulation technique and treatment design, which requires determining the geomechanical properties of the reservoir as well as the fluid to be used for stimulation. Properties of each reservoir are unique and require unique approaches to design and conduct fracturing solutions. The importance of geomechanical properties is discussed here. This paper can be used to help operators obtain a broad overview of the reservoir to determine the best completion and stimulation approaches for unconventional development.


Geophysics ◽  
2020 ◽  
pp. 1-67
Author(s):  
Muhammad Abid ◽  
Liping Niu ◽  
Jiqiang Ma ◽  
Jianhua Geng

The Sembar Shale formation in Lower Indus Basin Pakistan is thought to contain significant potential of unconventional resources; however, no detailed study has yet been carried out to quantify its potential. In conventional oil and gas exploration, reservoir rocks have been the main focus therefore, limited number of wells target the Sembar Formation. To explore its regional view, the seismic characterization of these shale is required. Generally, a poor correlation is generally observed between P-wave impedance and the reservoir and geomechanical properties of rocks, making it challenging to characterize them using seismic data. We present a workflow for characterizing the seismic derived unconventional prospect of the Sembar Shale using prestack seismic data along with well logs. The logging results of the two wells show that organic matter richness of well A is in high to very high values while, well B is in low to very low values. Considering the mineral composition and brittleness index evaluation the Sembar Shale in well A is brittle to less brittle in nature. The organic content, porosity, and brittleness index results in well A makes the Lower Cretaceous Sembar Formation favorable to be considered as a potential organic shale reservoir. Four sensitive attributes, derived through integration of the rock petrophysical, geochemical and geomechanical parameters, are correlated with P-wave impedance. The correlation of each sensitive attribute has been applied to characterize the Sembar Shale potential. These attributes are first-order indicators to depict organic matter, porosity and geomechanical properties. This attribute approach is further validated through rock physics modeling. The workflow presented in this study can be employed to assess unconventional reservoir potential of the Sembar Formation in other parts of the basin.


2013 ◽  
Author(s):  
Xin Wang ◽  
Yun Hong Ding ◽  
Nai Ling Xiu ◽  
Zhen Duo Wang ◽  
Yu Zhong Yan

Sign in / Sign up

Export Citation Format

Share Document