wave impedance
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 64)

H-INDEX

23
(FIVE YEARS 4)

Lithosphere ◽  
2022 ◽  
Vol 2022 (Special 3) ◽  
Author(s):  
Chunfang Wu ◽  
Jing Ba ◽  
Lin Zhang ◽  
José M. Carcione

Abstract Tight sandstones have low porosity and permeability and strong heterogeneities with microcracks, resulting in small wave impedance contrasts with the surrounding rock and weak fluid-induced seismic effects, which make the seismic characterization for fluid detection and identification difficult. For this purpose, we propose a reformulated modified frame squirt-flow (MFS) model to describe wave attenuation and velocity dispersion. The squirt-flow length (R) is an important parameter of the model, and, at present, no direct method has been reported to determine it. We obtain the crack properties and R based on the DZ (David-Zimmerman) model and MFS model, and how these properties affect the wave propagation, considering ultrasonic experimental data of the Sichuan Basin. The new model can be useful in practical applications related to exploration areas.


Author(s):  
А.С. Арефьев

The problem of synthesis of the three–link stepped Chebyshev's microwave filter is reduced to two independent fourth degree equations, including a single link wave impedance as unknown. The solution of Descartes – Euler is applied to these equations. It is proved, that in case of wave impedances of extreme links are equal, the problem of the filter synthesis has two solutions. Identical phase–frequency responses correspond to these solutions. It is proved, that for every one of links a product of the wave impedances, relating to these solutions, is equal to a square of the wave impedance of transmission line, including filter.


Author(s):  
Wanyi Du ◽  
Yuanyuan Huang ◽  
Yixuan Zhou ◽  
Xinlong Xu

Abstract Terahertz (THz) interface physics as a new interdiscipline between THz technique and condensed matter physics has undergone rapid developments in recent years. Especially, the developments of advanced materials, such as graphene, transitional metal dichalcogenides, topological insulators, ferromagnetic metals, and metamaterials, have revolutionized the interface field and further promotes the development of THz functional devices based on interface physics. Moreover, playing at the interface with these advanced materials could unveil a wealth of fascinating physical effects such as charge transfer, proximity effect, inverse spin-Hall effect, and Rashba effect with THz technology by engineering the charge, spin, orbit, valley, and lattice degrees of freedom. In this review, we start from the discussion of the basic theory of THz interface physics, including interface formation with advanced materials, THz wave reflection and transmission at the interface, and band alignment and charge dynamics at the interface. Then we move to recent progresses in advanced materials from THz wave propagation to THz wave generation at the interface. In the THz wave propagation, we focus on the THz wave impedance-matching, Goos–Hänchen and Imbert–Fedorov shifts in THz region, interfacial modulation and interfacial sensing based on THz wave. In the THz wave generation, we summarize the ongoing coherent THz wave generation from van der Waals interfaces, multiferroic interfaces, and magnetic interfaces. The fascinating THz interface physics in advanced materials is promising and promoting novel THz functional devices for manipulating the propagation and generation of THz wave at the interfaces.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7225
Author(s):  
Chuantong Ruan ◽  
Jing Ba ◽  
José M. Carcione ◽  
Tiansheng Chen ◽  
Runfa He

Low porosity-permeability structures and microcracks, where gas is produced, are the main characteristics of tight sandstone gas reservoirs in the Sichuan Basin, China. In this work, an analysis of amplitude variation with offset (AVO) is performed. Based on the experimental and log data, sensitivity analysis is performed to sort out the rock physics attributes sensitive to microcrack and total porosities. The Biot–Rayleigh poroelasticity theory describes the complexity of the rock and yields the seismic properties, such as Poisson’s ratio and P-wave impedance, which are used to build rock-physics templates calibrated with ultrasonic data at varying effective pressures. The templates are then applied to seismic data of the Xujiahe formation to estimate the total and microcrack porosities, indicating that the results are consistent with actual gas production reports.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012119
Author(s):  
L. Stefanini ◽  
D. Ramaccia ◽  
A. Toscano ◽  
F. Bilotti

Abstract In this contribution, we present the analysis and numerical verification of the scattering phenomenon from a temporal interface in a parallel-plate waveguide realized by suddenly modifying the dimensions of the waveguide while the wave is propagating. As it is well known in guided wave theory, at the interface between two different waveguides there exists a change of the effective refractive index and wave impedance perceived by the propagating wave within the device, which inevitably scatters at the interface into a reflected and refracted wave. In analogous way, by suddenly changing the effective material properties within the whole waveguide, it is possible to realize the so-called temporal interface, as well. Here, we theoretically and numerically investigate on the scattering from a waveguide temporal interface induced by the abrupt change of the waveguide dimension, which in turn realize a change of the effective material properties perceived by the wave.


2021 ◽  
Vol 172 ◽  
pp. 112855
Author(s):  
Qichao Tian ◽  
Yuling Sun ◽  
Honghao Ma ◽  
Yang Zhao ◽  
Zhaowu Shen ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1127
Author(s):  
Jiawang Hao ◽  
Qingwen Li ◽  
Lan Qiao

High energy consumption in ore crushing brings great challenges to the mining industry. Microwave irradiation provides a promising solution for rock breaking. However, there is currently a lack of detailed understanding of the microwave parameters regarding magnetite ore. The purpose of this study is to fully understand the potential value of microwave irradiation applied in auxiliary crushing of magnetite ore. It is typically found that increasing power reduces the mechanical properties of ore, increasing energy utilization, and crushing degree, more than extending time. Based on wave impedance, this reveals the dependence of energy utilization on thermal damage. Increasing irradiation power, time and cooling rate will cause more transgranular cracks and cleavage tears in the crushed ore. Based on the separate microwave response of several minerals, the microwave-damage mechanism of magnetite ore is further demonstrated.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1114
Author(s):  
Yosef T. Aladadi ◽  
Majeed A. S. Alkanhal

This paper presents a full electromagnetic (EM) characterization of metallic lenses. The method is based on the utilization of free-space transmission and reflection coefficients to accurately obtain lenses’ tensorial EM parameters. The applied method reveals a clear anisotropic behavior with a full tensorial directional permittivity and permeability and noticeably dispersive permeability and wave impedance. This method yields accurate values for the effective refractive index, wave impedance, permittivity, and permeability, unlike those obtained by simple methods such as the eigenmode method. These correct cell parameters affect their lens performance, as manifested in a clear level of anisotropy, impedance matching, and losses. The effect of anisotropy caused by oblique incidence on the performance and operation of lens designs is illustrated in a lens design case.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yong Wu ◽  
Xuxu Wang ◽  
Lu Zhou ◽  
Chongyang Han ◽  
Lianjin Zhang ◽  
...  

The dolomite reservoir of the fourth member of Dengying Formation in Moxi area of Sichuan Basin is thin, is fast in lateral variation, and has P-impedance difference from the surrounding rock; it is difficult to identify and predict the dolomite reservoir and fluid properties by conventional poststack seismic inversion. Through the correlation analysis of core test data and logging P-S-wave velocity, this work proposed a formula to calculate the shear wave velocity in different porosity ranges and solved the issue that some wells in the study area have no S-wave logging data. AVO forward analysis reveals that whether the gas reservoir of dolomite reservoir is located at the top of the fourth member of Dengying Formation is the main factor affecting the variation of AVO type. Through cross-plotting analysis of elastic parameters, it is found that P-S-wave velocity ratio and fluid factor are sensitive parameters to gas-bearing property of dolomite reservoir in the study area. By comparing the inversion results of prestack parameters such as density, P-wave impedance, S-wave impedance, P-S-wave velocity ratio, and fluid factor, it is found that the gas-bearing prediction of dolomite reservoir by using P-S-wave velocity ratio and fluid factor obtained from simultaneous prestack inversion had the highest coincidence rate with actual drilling data. At last, according to the distribution characteristics of fluid factor and P-S-wave velocity ratio, the favorable gas-bearing areas of dolomite reservoir in the fourth member of Dengying Formation in the study area are finely predicted, and the next favorable exploration areas were pointed out.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giuseppe Castaldi ◽  
Victor Pacheco-Peña ◽  
Massimo Moccia ◽  
Nader Engheta ◽  
Vincenzo Galdi

Abstract Multisection quarter-wave impedance transformers are widely applied in microwave engineering and optics to attain impedance-matching networks and antireflection coatings. These structures are mostly designed in the spatial domain (time harmonic) by using geometries of different materials. Here, we exploit such concepts in the time domain by using time-varying metamaterials. We derive a formal analogy between the spectral responses of these structures and their temporal analogs, i.e., time-varying stepped refractive-index profiles. We show that such space-time duality grants access to the vast arsenal of synthesis approaches available in microwave engineering and optics. This allows, for instance, the synthesis of temporal impedance transformers for broadband impedance matching with maximally flat or equi-ripple responses, which extend and generalize the recently proposed quarter-wave design as an antireflection temporal coating. Our results, validated via full-wave numerical simulations, provide new insights and deeper understanding of the wave dynamics in time-varying media, and may find important applications in space-time metastructures for broadband frequency conversion and analog signal processing.


Sign in / Sign up

Export Citation Format

Share Document