scholarly journals Synaptic Depression of the Hyppocampal to Prefrontal Cortex Pathway during a Spatial Working Memory Task

2000 ◽  
Author(s):  
F. Burette ◽  
T. Jay ◽  
S. Laroche
2017 ◽  
Author(s):  
Samuel S. McAfee ◽  
Yu Liu ◽  
Roy V. Sillitoe ◽  
Detlef H. Heck

AbstractThe cerebellum has long been recognized for its role in tasks involving precise timing, particularly the temporal coordination of movements. Here we asked whether cerebellar might be involved in the temporal coordination of the phases of neuronal oscillations in the medial prefrontal cortex (mPFC) and dorsal hippocampus CA1 region (CA1). These two structures and the cerebellum are jointly involved in spatial working memory. The phases of oscillations in the mPFC and CA1 have been shown to reach a stable alignment (coherence) during the decision making process in a spatial working memory task. Here we report that PC simple spike activity in the cerebellar lobulus simplex in awake, head-fixed mice represents specific phase differences between oscillations in the mPFC and CA1. Most PCs represented phase differences in more than one the conventional frequency bands (delta, theta, beta and gamma). Between the 32 PCs analyzed here, phase differences in all frequency bands were represented. PCs representing phase differences in the theta and low gamma bands showed significant population preference for mPFC phase leading CA1 phase. These findings support the possibility of a cerebellar involvement in the temporal coordination of phase relationships between oscillations in the mPFC and CA1.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Claudia Böhm ◽  
Albert K Lee

The prefrontal cortex (PFC)’s functions are thought to include working memory, as its activity can reflect information that must be temporarily maintained to realize the current goal. We designed a flexible spatial working memory task that required rats to navigate – after distractions and a delay – to multiple possible goal locations from different starting points and via multiple routes. This made the current goal location the key variable to remember, instead of a particular direction or route to the goal. However, across a broad population of PFC neurons, we found no evidence of current-goal-specific memory in any previously reported form – that is differences in the rate, sequence, phase, or covariance of firing. This suggests that such patterns do not hold working memory in the PFC when information must be employed flexibly. Instead, the PFC grouped locations representing behaviorally equivalent task features together, consistent with a role in encoding long-term knowledge of task structure.


2020 ◽  
Author(s):  
Claudia Böhm ◽  
Albert K. Lee

AbstractThe prefrontal cortex (PFC)’s functions are thought to include working memory, as its activity can reflect information that must be temporarily maintained to realize the current goal. We designed a flexible spatial working memory task that required rats to navigate - after distractions and a delay - to multiple possible goal locations from different starting points and via multiple routes. This made the current goal location the key variable to remember, instead of a particular direction or route to the goal. However, across a broad population of PFC neurons, we found no evidence of current-goal-specific memory in any previously reported form - i.e. differences in the rate, sequence, phase or covariance of firing. This suggests such patterns do not hold working memory in the PFC when information must be employed flexibly. Instead, the PFC grouped locations representing behaviorally equivalent task features together, consistent with a role in encoding long-term knowledge of task structure.


Author(s):  
Megan Roussy ◽  
Rogelio Luna ◽  
Lyndon Duong ◽  
Benjamin Corrigan ◽  
Roberto A. Gulli ◽  
...  

AbstractKetamine is a dissociative anesthetic drug, which has more recently emerged as a rapid-acting antidepressant. When acutely administered at subanesthetic doses, ketamine causes cognitive deficits like those observed in patients with schizophrenia, including impaired working memory. Although these effects have been linked to ketamine’s action as an N-methyl-D-aspartate receptor antagonist, it is unclear how synaptic alterations translate into changes in brain microcircuit function that ultimately influence cognition. Here, we administered ketamine to rhesus monkeys during a spatial working memory task set in a naturalistic virtual environment. Ketamine induced transient working memory deficits while sparing perceptual and motor skills. Working memory deficits were accompanied by decreased responses of fast spiking inhibitory interneurons and increased responses of broad spiking excitatory neurons in the lateral prefrontal cortex. This translated into a decrease in neuronal tuning and information encoded by neuronal populations about remembered locations. Our results demonstrate that ketamine differentially affects neuronal types in the neocortex; thus, it perturbs the excitation inhibition balance within prefrontal microcircuits and ultimately leads to selective working memory deficits.


Sign in / Sign up

Export Citation Format

Share Document