Explanation of the anomalous secular increase of the moon orbit eccentricity by the new theory of gravitation (NTG).

2013 ◽  
Vol 26 (1) ◽  
pp. 82-85 ◽  
Author(s):  
Reiner Georg Ziefle
2021 ◽  
Vol 2 (6) ◽  
pp. 232
Author(s):  
Isamu Matsuyama ◽  
Antony Trinh ◽  
James T. Keane

Abstract The present ellipsoidal figure of the Moon requires a deformation that is significantly larger than the hydrostatic deformation in response to the present rotational and tidal potentials. This has long been explained as due to a fossil rotational and tidal deformation from a time when the Moon was closer to Earth. Previous studies constraining the orbital parameters at the time the fossil deformation was established find that high orbit eccentricities (e ≳ 0.2) are required at this ancient time, which is difficult to reconcile with the freezing of a fossil figure owing to the expected large tidal heating. We extend previous fossil deformation studies in several ways. First, we consider the effect of removing South Pole−Aitken (SPA) contributions from the present observed deformation using a nonaxially symmetric SPA model. Second, we use the assumption of an equilibrium Cassini state as an additional constraint, which allows us to consider the fossil deformation due to nonzero obliquity self-consistently. A fossil deformation established during Cassini state 1, 2, or 4 is consistent with the SPA-corrected present deformation. However, a fossil deformation established during Cassini state 2 or 4 requires large obliquity and orbit eccentricity (ϵ ∼ 68° and e ∼ 0.65), which are difficult to reconcile with the corresponding strong tidal heating. The most likely explanation is a fossil deformation established during Cassini state 1, with a small obliquity (ϵ ∼ −0.2°) and an orbit eccentricity range that includes zero eccentricity (0 ≤ e ≲ 0.3).


Author(s):  
Rajendra P. Gupta

We have shown that three astrometric solar-system anomalies can be explained satisfactorily by using evolutionary gravitational constant G and speed of light c in the Einstein’s field equation. These are: a) the Pioneer acceleration anomaly; b) the anomalous secular increase of Moon-orbit eccentricity; and c) the anomalous secular change in the astronomical unit AU. The gravitational constant G and the speed of light c both increase as dG/dt = 5.4GH0 and dc/dt = 1.8cH0 with H0 as the Hubble constant. We also show that the Planck’s constant ħ increases as dħ/dt = 1.8ħH0.  Additionally, the new approach fits the supernovae Ia redshift vs distance modulus data as well as the standard ΛCDM model with just one adjustable parameter H0.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 441-444 ◽  
Author(s):  
J. E. Geake ◽  
H. Lipson ◽  
M. D. Lumb

Work has recently begun in the Physics Department of the Manchester College of Science and Technology on an attempt to simulate lunar luminescence in the laboratory. This programme is running parallel with that of our colleagues in the Manchester University Astronomy Department, who are making observations of the luminescent spectrum of the Moon itself. Our instruments are as yet only partly completed, but we will describe briefly what they are to consist of, in the hope that we may benefit from the comments of others in the same field, and arrange to co-ordinate our work with theirs.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1962 ◽  
Vol 14 ◽  
pp. 113-115
Author(s):  
D. W. G. Arthur ◽  
E. A. Whitaker

The cartography of the lunar surface can be split into two operations which can be carried on quite independently. The first, which is also the most laborious, is the interpretation of the lunar photographs into the symbolism of the map, with the addition of fine details from telescopic sketches. An example of this kind of work is contained in Johann Krieger'sMond Atlaswhich consists of photographic enlargements in which Krieger has sharpened up the detail to accord with his telescopic impressions. Krieger did not go on either to convert the photographic picture into the line symbolism of a map, or to place this picture on any definite map projection.


Sign in / Sign up

Export Citation Format

Share Document