The Planetary Science Journal
Latest Publications


TOTAL DOCUMENTS

327
(FIVE YEARS 327)

H-INDEX

3
(FIVE YEARS 3)

Published By American Astronomical Society

2632-3338

2022 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Neil Dello Russo ◽  
Ronald J. Vervack ◽  
Hideyo Kawakita ◽  
Boncho P. Bonev ◽  
Michael A. DiSanti ◽  
...  

Abstract High-resolution infrared spectra of comet C/2014 Q2 Lovejoy were acquired with NIRSPEC at the W. M. Keck Observatory on two post-perihelion dates (UT 2015 February 2 and 3). H2O was measured simultaneously with CO, CH3OH, H2CO, CH4, C2H6, C2H4, C2H2, HCN, and NH3 on both dates, and rotational temperatures, production rates, relative abundances, H2O ortho-to-para ratios, and spatial distributions in the coma were determined. The first detection of C2H4 in a comet from ground-based observations is reported. Abundances relative to H2O for all species were found to be in the typical range compared with values for other comets in the overall population to date. There is evidence of variability in rotational temperatures and production rates on timescales that are small compared with the rotational period of the comet. Spatial distributions of volatiles in the coma suggest complex outgassing behavior. CH3OH, HCN, C2H6, and CH4 spatial distributions in the coma are consistent with direct release from associated ices in the nucleus and are peaked in a more sunward direction compared with co-measured dust. H2O spatial profiles are clearly distinct from these other four species, likely due to a sizable coma contribution from icy grain sublimation. Spatial distributions for C2H2, H2CO, and NH3 suggest substantial contributions from extended coma sources, providing further evidence for distinct origins and associations for these species in comets. CO shows a different spatial distribution compared with other volatiles, consistent with jet activity from discrete nucleus ice sources.


2022 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Daniele Locci ◽  
Antonino Petralia ◽  
Giuseppina Micela ◽  
Antonio Maggio ◽  
Angela Ciaravella ◽  
...  

Abstract The interaction of exoplanets with their host stars causes a vast diversity in bulk and atmospheric compositions and physical and chemical conditions. Stellar radiation, especially at the shorter wavelengths, drives the chemistry in the upper atmospheric layers of close orbiting gaseous giants, providing drastic departures from equilibrium. In this study, we aim at unfolding the effects caused by photons in different spectral bands on the atmospheric chemistry. This task is particularly difficult because the characteristics of chemical evolution emerge from many feedbacks on a wide range of timescales, and because of the existing correlations among different portions of the stellar spectrum. In describing the chemistry, we have placed particular emphasis on the molecular synthesis induced by X-rays. The weak X-ray photoabsorption cross sections of the atmospheric constituents boost the gas ionization to pressures inaccessible to vacuum and extreme-ultraviolet photons. Although X-rays interact preferentially with metals, they produce a secondary electron cascade able to ionize efficiently hydrogen- and helium-bearing species, giving rise to a distinctive chemistry.


2022 ◽  
Vol 3 (1) ◽  
pp. 4
Author(s):  
Anthony P. Rasca ◽  
Shahab Fatemi ◽  
William M. Farrell

Abstract In the solar wind, a low-density wake region forms downstream of the nightside lunar surface. In this study, we use a series of 3D hybrid particle-in-cell simulations to model the response of the lunar wake to a passing coronal mass ejection (CME). Average plasma parameters are derived from the Wind spacecraft located at 1 au during three distinct phases of a passing halo (Earth-directed) CME on 2015 June 22. Each set of plasma parameters, representing the shock/plasma sheath, a magnetic cloud, and plasma conditions we call the mid-CME phase, are used as the time-static upstream boundary conditions for three separate simulations. These simulation results are then compared with results that use nominal solar wind conditions. Results show a shortened plasma void compared to nominal conditions and a distinctive rarefaction cone originating from the terminator during the CME’s plasma sheath phase, while a highly elongated plasma void reforms during the magnetic cloud and mid-CME phases. Developments of electric and magnetic field intensification are also observed during the plasma sheath phase along the central wake, while electrostatic turbulence dominates along the plasma void boundaries and 2–3 lunar radii R M downstream in the central wake during the magnetic cloud and mid-CME phases. The simulations demonstrate that the lunar wake responds in a dynamic way with the changes in the upstream solar wind during a CME.


2022 ◽  
Vol 3 (1) ◽  
pp. 5
Author(s):  
T. A. Nordheim ◽  
L. H. Regoli ◽  
C. D. K. Harris ◽  
C. Paranicas ◽  
K. P. Hand ◽  
...  

Abstract Jupiter’s moon Europa is exposed to constant bombardment by magnetospheric charged particles, which are expected to be a major source of physical and chemical surface modification. Here we have investigated the flux of magnetospheric ions at Europa’s surface by carrying out single particle tracing within realistic electromagnetic fields from multifluid magnetohydrodynamic simulations of the moon’s interaction with Jupiter’s magnetosphere. We find that magnetic field line draping and pileup leads to shielding and drastically reduced flux at low latitudes across Europa’s trailing (upstream) hemisphere. Furthermore, we find that magnetic induction within Europa’s subsurface ocean leads to additional shielding when the moon is located at high magnetic latitudes in Jupiter’s magnetosphere. Overall, we find that the high-latitude and polar regions on Europa receive the largest flux of magnetospheric ions. Both spacecraft and ground-based observations have previously identified a non–water ice surface species concentrated at Europa’s trailing (upstream) hemisphere, possibly hydrated sulfuric acid formed from radiolysis of water ice with implanted S ions. Our results demonstrate that the S ion flux across Europa’s equatorial trailing (upstream) hemisphere is strongly reduced, possibly indicating that the formation of the observed non–water ice species is controlled primarily by energy input from magnetospheric electrons, rather than the flux of S ions. We find that that O and S ions at >1 MeV energies have nearly uniform access to the surface, while energetic protons in this energy range are constrained to a “bull’s-eye” centered on the trailing (upstream) hemisphere.


2022 ◽  
Vol 3 (1) ◽  
pp. 3
Author(s):  
Wencheng D. Shao ◽  
Xi Zhang ◽  
João Mendonça ◽  
Thérèse Encrenaz

Abstract Observed chemical species in the Venusian mesosphere show local-time variabilities. SO2 at the cloud top exhibits two local maxima over local time, H2O at the cloud top is uniformly distributed, and CO in the upper atmosphere shows a statistical difference between the two terminators. In this study, we investigated these local-time variabilities using a three-dimensional (3D) general circulation model (GCM) in combination with a two-dimensional (2D) chemical transport model (CTM). Our simulation results agree with the observed local-time patterns of SO2, H2O, and CO. The two-maximum pattern of SO2 at the cloud top is caused by the superposition of the semidiurnal thermal tide and the retrograde superrotating zonal (RSZ) flow. SO2 above 85 km shows a large day–night difference resulting from both photochemistry and the subsolar-to-antisolar (SS-AS) circulation. The transition from the RSZ flows to SS-AS circulation can explain the CO difference between two terminators and the displacement of the CO local-time maximum with respect to the antisolar point. H2O is long-lived and exhibits very uniform distribution over space. We also present the local-time variations of HCl, ClO, OCS, and SO simulated by our model and compare to the sparse observations of these species. This study highlights the importance of multidimensional CTMs for understanding the interaction between chemistry and dynamics in the Venusian mesosphere.


2022 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Jialin Li ◽  
Xinting Yu ◽  
Ella Sciamma-O’Brien ◽  
Chao He ◽  
Joshua A. Sebree ◽  
...  

Abstract In Titan’s nitrogen-methane atmosphere, photochemistry leads to the production of complex organic particles, forming Titan’s thick haze layers. Laboratory-produced aerosol analogs, or “tholins,” are produced in a number of laboratories; however, most previous studies have investigated analogs produced by only one laboratory rather than a systematic, comparative analysis. In this study, we performed a comparative study of an important material property, the surface energy, of seven tholin samples produced in three independent laboratories under a broad range of experimental conditions, and we explored their commonalities and differences. All seven tholin samples are found to have high surface energies and are therefore highly cohesive. Thus, if the surface sediments on Titan are similar to tholins, future missions such as Dragonfly will likely encounter sticky sediments. We also identified a commonality between all the tholin samples: a high dispersive (nonpolar) surface energy component of at least 30 mJ m−2. This common property could be shared by the actual haze particles on Titan as well. Given that the most abundant species interacting with the haze on Titan (methane, ethane, and nitrogen) are nonpolar in nature, the dispersive surface energy component of the haze particles could be a determinant factor in condensate−haze and haze−lake liquid interactions on Titan. With this common trait of tholin samples, we confirmed the findings of a previous study by Yu et al. that haze particles are likely good cloud condensation nuclei for methane and ethane clouds and would likely be completely wetted by the hydrocarbon lakes on Titan.


2021 ◽  
Vol 2 (6) ◽  
pp. 238
Author(s):  
Maximilian Kruss ◽  
Tim Salzmann ◽  
Eric Parteli ◽  
Felix Jungmann ◽  
Jens Teiser ◽  
...  

Abstract It is a long-standing open question whether electrification of wind-blown sand due to tribocharging—the generation of electric charges on the surface of sand grains by particle–particle collisions—could affect rates of sand transport occurrence on Mars substantially. While previous wind tunnel experiments and numerical simulations addressed how particle trajectories may be affected by external electric fields, the effect of sand electrification remains uncertain. Here we show, by means of wind tunnel simulations under air pressure of 20 mbar, that the presence of electric charges on the particle surface can reduce the minimal threshold wind shear velocity for the initiation of sand transport, u *ft, significantly. In our experiments, we considered different samples, a model system of glass beads as well as a Martian soil analog, and different scenarios of triboelectrification. Furthermore, we present a model to explain the values of u *ft obtained in the wind tunnel that is based on inhomogeneously distributed surface charges. Our results imply that particle transport that subsides, once the wind shear velocity has fallen below the threshold for sustained transport, can more easily be restarted on Mars than previously thought.


2021 ◽  
Vol 2 (6) ◽  
pp. 241
Author(s):  
N. Nettelmann ◽  
N. Movshovitz ◽  
D. Ni ◽  
J. J. Fortney ◽  
E. Galanti ◽  
...  

Abstract Interior modeling of Jupiter and Saturn has advanced to a state where thousands of models are generated that cover the uncertainty space of many parameters. This approach demands a fast method of computing their gravity field and shape. Moreover, the Cassini mission at Saturn and the ongoing Juno mission delivered gravitational harmonics up to J 12. Here we report the expansion of the theory of figures, which is a fast method for gravity field and shape computation, to the seventh order (ToF7), which allows for computation of up to J 14. We apply three different codes to compare the accuracy using polytropic models. We apply ToF7 to Jupiter and Saturn interior models in conjunction with CMS-19 H/He equation of state. For Jupiter, we find that J 6 is best matched by a transition from an He-depleted to He-enriched envelope at 2–2.5 Mbar. However, the atmospheric metallicity reaches 1 × solar only if the adiabat is perturbed toward lower densities, or if the surface temperature is enhanced by ∼14 K from the Galileo value. Our Saturn models imply a largely homogeneous-in-Z envelope at 1.5–4 × solar atop a small core. Perturbing the adiabat yields metallicity profiles with extended, heavy-element-enriched deep interior (diffuse core) out to 0.4 R Sat, as for Jupiter. Classical models with compact, dilute, or no core are possible as long as the deep interior is enriched in heavy elements. Including a thermal wind fitted to the observed wind speeds, representative Jupiter and Saturn models are consistent with all observed J n values.


2021 ◽  
Vol 2 (6) ◽  
pp. 239
Author(s):  
Tom Seccull ◽  
Wesley C. Fraser ◽  
Thomas H. Puzia

Abstract Centaurs with high orbital inclinations and perihelia (i > 60°; q ≳ 5 au) are a small group of poorly understood minor planets that are predicted to enter the giant planet region of the solar system from the inner Oort Cloud. As such, they are one of the few samples of relatively unaltered Oort Cloud material that can currently be directly observed. Here we present two new reflectance spectra of one of the largest of these objects, 2012 DR30, in order to constrain its color and surface composition. Contrary to reports that 2012 DR30 has variable optical color, we find that consistent measurements of its spectral gradient from most new and published data sets at 0.55–0.8 μm agree with a spectral gradient of S ′ ≃ 10 % ± 1 % / 0.1 μ m within their uncertainties. The spectral variability of 2012 DR30 at near-UV/blue and near-IR wavelengths, however, is still relatively unconstrained; self-consistent rotationally resolved follow-up observations are needed to characterize any spectral variation in those regions. We tentatively confirm previous detections of water ice on the surface of 2012 DR30, and we also consistently observe a steady steepening of the gradient of its spectrum from λ ∼ 0.6 μm toward near-UV wavelengths. Plausible surface materials responsible for the observed reddening may include ferric oxides contained within phyllosilicates and aromatic refractory organics.


2021 ◽  
Vol 2 (6) ◽  
pp. 240
Author(s):  
Joseph E. Roser ◽  
Alessandra Ricca ◽  
Richard J. Cartwright ◽  
Cristina Dalle Ore ◽  
Dale P. Cruikshank

Abstract A near-IR absorption band at 2.2 μm linked to ammonia-containing ice has been detected on icy bodies throughout the solar system and appears in the extensive volume of data for Pluto and Charon returned by New Horizons. This band is an important clue for understanding the abundance of ammonia and ammoniated compounds on the surface of outer solar system bodies and requires new laboratory data for its full analysis. To satisfy this data need, the complex refractive index of amorphous ammonia ice was calculated from experimental infrared transmission spectra with ice deposition and measurements conducted at 40 K, a characteristic surface temperature for outer solar system bodies. The measured imaginary part of the complex refractive index and associated band strength calculations are generally larger than prior published values for amorphous ammonia ice at 30 K. The complex refractive index for amorphous ammonia at 40 K computed in the mid-infrared region (2.5–22.73 μm) will also be valuable for interpreting observations of both solar system and astrophysical sources anticipated with the Near InfraRed Spectrograph and Mid-Infrared Instrument on the James Webb Space Telescope.


Sign in / Sign up

Export Citation Format

Share Document